
Predicting core columns of
protein multiple sequence alignments

for improved parameter advising

Dan DeBlasio
John Kececioglu

Workshop on Algorithms in Bioinformatics
August 24, 2016



Motivation
Multiple sequence alignment is a fundamental problem in 
bioinformatics.

• multiple sequence alignment is NP-Complete
• many popular aligners for multiple sequence alignment
• each aligner has many parameters whose values affect the 

alignment that is output

2



Motivation
Aligners often use one default parameter choice for all inputs.

• The default has good average accuracy across all 
benchmarks.

• The optimal default choice can be found by inverse alignment 
[Kececioglu and Kim 2007].

• The default may be a poor choice for specific inputs.

3

alternate

default



Parameter advising
Advising for unaligned input sequences 

• aligns sequences using each parameter choice from a set,
• assigns an estimated accuracy to each alignment, and
• selects the alignment with the highest estimated accuracy.

The Parameter Advising Process

Advisor EstimatorAdvisor Set
Aligned 

Sequences

A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

(γE,γI,λE,λI,σ) A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

AlignmentAligner A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

Estimated 
Accuracy

Alignment

maxAccuracy 
Estimator

Unaligned 
Sequences

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP

Parameter Choices

4



Parameter advising
A parameter advisor has two components:

• an accuracy estimator, and 
• a set of candidate parameter choices.

5

The Parameter Advising Process

Advisor EstimatorAdvisor Set
Aligned 

Sequences

A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

(γE,γI,λE,λI,σ) A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

AlignmentAligner A-GT-PNGNP
A-G--P-GNP
A-GTTPNGNP
-CGT-PN--P
ACGT-UNGNP

Estimated 
Accuracy

Alignment

maxAccuracy 
Estimator

Unaligned 
Sequences

AGTPNGNP
AGPGNP
AGTTPNGNP
CGTPNP
ACGTUNGNP

Parameter Choices



Accuracy estimation
Alignment accuracy is measured with respect to a reference 
alignment.

6

• accuracy is the fraction of substitutions from the reference that 
are in the computed alignment,

• measured on the core columns of the reference.

... a D E hs ...

... d S R -d ...

... a S H lt ...

... a D E h - s ...

... d S R - - d ...

... a S - H l t ...

reference
alignment

computed
alignment

66%
Accuracy



Accuracy estimation
Our estimator Facet (“Feature-based ACcuracy EsTimator”)

• estimates accuracy by a polynomial on feature functions,
• efficiently learns the polynomial coefficients from examples,
• uses novel features that are efficient to evaluate.

7



Accuracy estimation
The estimator E(A) is a polynomial in the feature functions fi(A).

8

linear estimator

quadratic estimator

E(A) :=
∑

i

ci fi(A)

E(A) :=
∑

i

ci fi(A) +
∑

i

∑

j

cij fi(A) fj(A)



Learning the estimator
We learn the estimator using examples consisting of

• an alignment, and
• its associated true accuracy.

Learning finds optimal coefficients that either fit
• accuracy values of the examples, or
• accuracy differences on pairs of examples,
• by solving a linear or quadratic program.

9



Feature functions
We use protein alignment feature functions that

• are fast to evaluate,
• measure novel properties,
• use non-local information,
• involve secondary structure.

10



Feature functions
Features based only on the input alignment

• Amino Acid Identity
• Average Substitution Score
• Information Content
• ...

11



12

There are three types of secondary structure
• α-helix, 
• β-strand,
• coil.

http://www.ebi.ac.uk/training/online/

Feature functions

http://www.ebi.ac.uk/training/online/


Feature functions
Features using predicted secondary structure

• Secondary Structure Percent Identity 
• Secondary Structure Agreement
• Secondary Structure Blockiness
• ...

13



Secondary Structure Blockiness

14

A block B in alignment A is

• an interval of at least l columns,

• a subset of at least k rows,

• with the same secondary structure for all residues in B.



Secondary Structure Blockiness

14

A block B in alignment A is

• an interval of at least l columns,

• a subset of at least k rows,

• with the same secondary structure for all residues in B.



Secondary Structure Blockiness
A packing P  for alignment A is

• a set of blocks from A,

• whose columns are disjoint.

The value of P is the number of substitutions it contains.

The Blockiness feature is the maximum value of any packing.

15



Secondary Structure Blockiness
A packing P  for alignment A is

• a set of blocks from A,

• whose columns are disjoint.

The value of P is the number of substitutions it contains.

The Blockiness feature is the maximum value of any packing.

Theorem (Evaluating Blockiness)
Blockiness can be computed in O(mn) time,  
for an alignment with m rows and n columns.

15



Accuracy estimation
Best features trend well with accuracy.

16
Facet estimator has less spread than its features.

True Accuracy
0 0.2 0.4 0.6 0.8 1

F
a
c
e
t 

V
a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

B
lo

c
k

in
e

s
s

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
tr

u
c

tu
re

 I
d

e
n

ti
ty

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1S

tr
u

c
tu

re
 A

g
re

e
m

e
n

t

0

0.2

0.4

0.6

0.8

1



Predicting column coreness
Alignment accuracy is only measured on core columns

• Highly reliable columns in benchmark alignments
• Coreness is the fraction of a computed column that is core
• Weighting features by coreness improves Facet

17

rkeyagLYHEVAQAHGVDVSQVrqMKFGLFFLFDTLAVyqmsegrfafhkiindafttEAARAEARVyleefvresysnt 
kkaqldLYNEVATEHGYDVTKId-MKFGNFLLFDTVWLlqmskgrfrfydlmkegfneNRAKDICRNflghwy-dsyvna 
riellnHYQAAAAKFNVDIANVr----------------kWNYGVFFLYDVVA--FseTQAKAELSIyledyl--sytqa 
rlkllsFYNASASKYNKNIDLVr----------------kWNYGVFFVYDVIN--IddTVAKEELKLyienyv--actqp



Predicting column coreness

18

coreness
0.8 1.0 1.0

e e P D D D d d d d
e e P E E E e e e e
e e V D D D d d d d
e e E P P P p p p p
h a I V V V v v v v
h H - I I I i i i i
e e A P P P p p p p

http://www.ebi.ac.uk/training/online/



Predicting column coreness

19

…
(D, α) (E, α)

…
(P, β) (V, β) (I, β)

…
0.22 0.22 0.33 0.11 0.11

e e P D D D d d d d
e e P E E E e e e e
e e V D D D d d d d
e e E P P P p p p p
h a I V V V v v v v
h H - I I I i i i i
e e A P P P p p p p



Predicting column coreness

19

e e P D D D d d d d
e e P E E E e e e e
e e V D D D d d d d
e e E P P P p p p p
h a I V V V v v v v
h H - I I I i i i i
e e A P P P p p p p



Predicting column coreness

20

point p

e e P D D D d d d d
e e P E E E e e e e
e e V D D D d d d d
e e E P P P p p p p
h a I V V V v v v v
h H - I I I i i i i
e e A P P P p p p p



Predicting column coreness

Columns

-1 0 +1

C C C

CoreC C N

N C C

C N N

Non CoreN N C

N N N

Window classes are dependent on the coreness of individual 
columns

21

Class “CCN”



Predicting column coreness

Columns

-1 0 +1

C C C

CoreC C N

N C C

C N N

Non CoreN N C

N N N

Window classes are dependent on the coreness of individual 
columns

21
Classes “NCN” and “CNC” appeared very rarely in examples

Unstructured  
Class, ⊥

Structured  
ClassesSet of classes,

C



Predicting column coreness

22

p

q

dc(p,q)
Core Window 

Examples

Non-Core Window 
Examples



Predicting column coreness
Transform distance into a coreness based neighbor’s class

23

Core

Non-core

dc(p,q)

Predicted 
coreness of p



The distance function
The distance between two points 

• measures the difference in window composition
• as a weighted sum of state-pair frequencies
• on corresponding columns of the two windows
• is specific to each window class

24

d(V,W ) =:
∑

−w≤i≤+w

∑

p,q∈Q

Vi(p)Wi(q) σi(p, q)



The distance function
The distance between two points 

• measures the difference in window composition
• as a weighted sum of state-pair frequencies
• on corresponding columns of the two windows
• is specific to each window class

24

d(V,W ) =:
∑

−w≤i≤+w

∑

p,q∈Q

Vi(p)Wi(q) σi(p, q)

each column in a window



The distance function
The distance between two points 

• measures the difference in window composition
• as a weighted sum of state-pair frequencies
• on corresponding columns of the two windows
• is specific to each window class

24

d(V,W ) =:
∑

−w≤i≤+w

∑

p,q∈Q

Vi(p)Wi(q) σi(p, q)

each pair of states



The distance function
The distance between two points 

• measures the difference in window composition
• as a weighted sum of state-pair frequencies
• on corresponding columns of the two windows
• is specific to each window class

24

d(V,W ) =:
∑

−w≤i≤+w

∑

p,q∈Q

Vi(p)Wi(q) σi(p, q)

state pair frequency



The distance function
The distance between two points 

• measures the difference in window composition
• as a weighted sum of state-pair frequencies
• on corresponding columns of the two windows
• is specific to each window class

24

d(V,W ) =:
∑

−w≤i≤+w

∑

p,q∈Q

Vi(p)Wi(q) σi(p, q)

substitution of 
the state pair



Learning the distance function
We learn the distance functions using 

• a set of labeled training points representing all classes
• a touchstone of labeled examples from each structured class.

25



Learning the distance function

26

W

V

τ
Z

Targets Targets are from the same 
window class

We want to pull targets close 
to the example



Learning the distance function

26

W

V

τ
Z

Targets

eVW = d(V,W )− τ
d(V,W )

Targets are from the same 
window class

We want to pull targets close 
to the example



Learning the distance function

26

W

V

τ
Z

eZW = 0
Targets

eVW = d(V,W )− τ

d(Z,W )

Targets are from the same 
window class

We want to pull targets close 
to the example



Learning the distance function

26

W

V

τ
Z

eZW = 0
Targets

eVW = d(V,W )− τ

Target error for example W is 

Targets are from the same 
window class

eW =
eVW + eZW + ...

4

We want to pull targets close 
to the example



Learning the distance function

27

W

τ
1

Impostors

Impostors are from the 
different window classes 
than W

We want to push targets 
away from the example



Learning the distance function

27

W

τ
1

Impostors V

d(V,W )

fVW = τ + 1− d(V,W )

Impostors are from the 
different window classes 
than W

We want to push targets 
away from the example



Learning the distance function

27

W

τ
1

Impostors V

fVW = τ + 1− d(V,W )

Z

d(Z,W )

fZW = 0

Impostors are from the 
different window classes 
than W

We want to push targets 
away from the example



Learning the distance function

27

W

τ
1

Impostors V

fVW = τ + 1− d(V,W )

Z

Y

fZW = 0

fYW = τ + 1− d(Y,W )

Impostors are from the 
different window classes 
than W

We want to push targets 
away from the example



Learning the distance function

27

W

τ
1

Impostors V

fVW = τ + 1− d(V,W )

Z

Y

fZW = 0

fYW = τ + 1− d(Y,W )

Impostor error for example W is fW = max(fVW , fZW , fYW , ...)

Impostors are from the 
different window classes 
than W

We want to push targets 
away from the example



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

minimize target error minimize impostor error

controls the influence of target error 
vs impostor error

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

only structured classes have targets

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

for each example of the class c

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

target error is averaged

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

unstructured examples 
only have impostors

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

for all examples of that class

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

impostor error is a maximum

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Learning the distance function
We find the distance function for all classes at once by 
solving a linear program which minimizes

28

We include constraints to ensure that the distances are symmetric, 
that self distance is smaller than any other and satisfy the triangle 
inequality. 

α 1
|C|−1

∑

c∈ C−{⊥}

1
|Sc|

∑

W ∈Sc

eW + (1−α) 1
|C|

∑

c∈ C

1
|Sc|

∑

W ∈Sc

fW ,



Augmenting existing features
We weight columns by predicted coreness when calculating 

• Amino Acid Identity
• Average Replacement Score
• Secondary Structure Identity
• Secondary Structure Support
• Secondary Structure Blockiness

29



Predicted Alignment Coreness
We create a new feature function using predicted coreness

• Similar to the total column score (TC-Score)
• Threshold the coreness value to make a binary labeling
• Normalize by an estimate of the number of core columns

30



Predicted Alignment Coreness
The normalizer is a weighted sum of products of up to 3 of

• aggregate length of sequences in the input
• ratio of longest common subsequence and aggregate length 
• ratio of maximum difference in length and aggregate length

31

We learn the normalizer coefficients using linear programming



Experimental results
We evaluate the accuracy of adaptive local realignment

• with the Opal aligner and Facet estimator,
• on over 800 benchmarks from BENCH and PALI,
• using 12-fold cross-validation.

32



Experimental results
We correct for the bias in over-representation of  
easy-to-align benchmarks.

• The difficulty of a benchmark is its accuracy under the default 
parameter setting.

• Split the range of difficulties [0,1] into 10 bins.
• Report advisor accuracy uniformly averaged across bins.

The typical average accuracy is close to 50%.

33



Experimental results
Facet modified with coreness versus set cardinality

34Predicting coreness boosts accuracy for Facet



Experimental results
Facet modified with coreness within difficulty bins

35

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Ad
vi
si
ng
	A
cc
ur
ac
y	

Benchmark	Bin	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

s	

Advising	Accuracy	

		
Average	

(12)	
(12)	 (20)	

(34)	

(26)	

(50)	
(62)	

(74)	

(137)	

(434)	

(861)	

Facet/true 
Facet/predicted 
Facet/none 
Default 

Predicting coreness boosts accuracy for by more than 5%.



Experimental results
Facet modified with coreness versus greedy set cardinality

36Predicting coreness boosts accuracy for Facet



Accuracy estimation software
Available for download:

• Facet accuracy estimator
• Opal aligner with parameter advising 
• Parameter sets for advising

facet.cs.arizona.edu

37



Acknowledgments

People 

William Pearson
Travis Wheeler

Funding
• University of Arizona  

NSF IGERT in Genomics  
Grant DGE-0654435

• NSF Grant IIS-1217886

38


