PMFastR: A New Approach to Multiple RNA Structure Alignment

Dan DeBlasio

Jocelyn Braund Shaojie Zhang

Background

RNA secondary structure is more important to function

- ncRNA secondary structure is very important to function
- Structure is more conserved than sequence
- For example, tRNA (shown) conserves secondary structure between samples more than it conserves sequence
- Alignments of ncRNA should take into account this secondary structure because it is so important

Rfam 9.1

Current methods for multiple alignment

ClustalW

- Thomson, et al. (Nucleic Acids Res. 1994)
- Uses profile construction and pairwise alignments to create a sequence based multiple alignment
- Sequence only multiple alignment

RNACAD

- Brown. (ISMB 2000)
- Uses a CM to build a multiple alignment from a seed alignment
- Used for RDP
- SCFG based, requires good seed alignment

LARA

- Bauer, et αl. (BMC Bioinformatics 2007)
- Using a graph and an ILP solver, they take structural probability into consideration
- Does not output structure

Different approaches to RNA alignment

- sequence with structure alignment is an extension of RNA structure prediction
- three major types of alignments
 - sequence-sequence two sequences with out structure, predict structure after [Sankoff, (SIAM J. Appl. Math, 1985)]
 - structure-structure both sequences have structure
 - sequence-structure only one sequence has the associated structure given

Reasoning for using the sequencestructure paradigm

- Experimentally finding the sequence structure for RNA is expensive
- Assume only one sequence in a family has known structure
- Align all others to infer the structure

Methods

PMFastR

- Given:
 - One sequence with structure
 - Database of sequences without
- Output multiple alignment with structure

PMFastR

- Align the sequence with structure to one sequence from the database
- This becomes the input to the next alignment
- Align this profile with another sequence from the DB
- Repeat untill all sequences have been aligned
- Run CMBuild –refine to repair unpaired regions removed in the alignment procedure

Binarized trees encode the RNA sequence and structure

- From Bafna, et al. 1995(a), and Zhang, et al. 2004(b)
- Each base pair is a solid node
- Parental structure because no pseudoknots
- Dotted nodes indicate bifurcation points or unpaired bases

Alignment is done by traversing the binarized tree

- Each node has it own dynamic programming table
- Each cell represents a segment (two locations) in the target that align to that particular node for solid nodes
- Uses the best calculated results from its children to find its answer
- Trace from the root of the tree to find the alignment

Alignment algorithm

```
procedure PAln
(*M is the set of base-pairs in RNA profile R. M' is the augmented set. *)
for all nodes v \in M',
            all intervals (i, j), l_v-band \leq i \leq l_v+band and r_v-band \leq j \leq r_v+band
      if v \in M
                                mapRetrieve(\text{child}(v), i+1, j-1) + \delta(l_v, r_v, t[i], t[j]),
                                mapRetrieve(v, i, j - 1) + \gamma('-', t[j]),
                                mapRetrieve(v, i + 1, j) + \gamma('-', t[i]),
            value = \max \langle
                                mapRetrieve(\text{child}(v), i+1, j) + \gamma(l_v, t[i]) + \gamma(r_v, '-'),
                                mapRetrieve(\text{child}(v), i, j-1) + \gamma(l_v, '-') + \gamma(r_v, t[j]),
                                mapRetrieve(\text{child}(v), i, j) + \gamma(l_v, '-') + \gamma(r_v, '-'),
      else if v \in M' - M, and v has one child
                                mapRetrieve(\text{child}(v), i, j-1) + \gamma(r_v, t[j]),
            value = \max \left\{ \begin{array}{l} mapRetrieve(\text{child}(v), i, j) + \gamma(r_v, '-'), \\ mapRetrieve(v, i, j-1) + \gamma('-', t[j]), \end{array} \right.
                                mapRetrieve(v, i + 1, j) + \gamma('-', t[i]),
      else if v \in M' - M, and v has two children
            value = \max_{i < k < j} \{
                                mapRetrieve(left\_child(v), i, k-1) +
                                mapRetrieve(right\_child(v), k, j)
      end if
      mapSet(v, i, j, value)
end for
```


Tree Based Alignment

- For solid nodes, find the max score of
 - Matching bases
 - Match left, insert right
 - Insert left, match right
 - Delete left
 - Delete right
 - Gap left and right
- For unpaired base nodes (dotted with one child), find the max score of
 - Match base
 - Delete
 - Insert left
 - Insert right
- For Bifurcation nodes (dotted with two children), find the max score of
 - For each split of the covered area, sum the score for the two children

Banding reduces running time and memory consumption

- PMFastR is doing a global alignment
- We can assume that the location of the node v in the target will be in a similar location in the target
- Search and store only those locations
- There is still a 2-D array for each node
- This array reduces from n² to band²

Banding reduces running time and memory consumption

- This becomes very important for large sequences such as 16S and 23S rRNA
- Where b is the banding constant, most times set to be < 300</p>
- b needs to be larger than the difference in lengths of the sequences
- Nawrocki and Eddy (PLoS, 2007) are using a similar idea to align 16S rRNA using Covariance Models

	Without Banding	Banded
Number of Bases	16K	16K
Space Consumption (Order)	O(MN²)	$O(Mb^2)$
Space Consumption (Theoretical)	~3.8 GB	~137 MB (Assuming b=300)

Issues that arise using banding

- PMFastR does a global alignment
- ncRNA within the same family has a similar length
- The length can be quite large
- As the profile grows the in height (number of sequences) it also expands in length
- For banding to be effective, the sequence lengths need to be similar

Compacting the unpaired regions to increase quality and normalize the length

- Improve quality and reduce the size of the profile by removing columns in unpaired regions
- a predefined quality metric is the percentage of a column that must be present to not be removed
- present meaning not a blank character
- columns that encode structure are never removed

Multithreading to increase the wall time

- each node depends on only its child nodes if they exist
- each of the children does not depend on each other
- the child nodes can then be run independently
- once both children have been computed, the parent can be computed
- this is recursive down the tree

Results

Memory Consumption Reduction

- Ran PMFastR and FastR on the same input set
- Cobalamin data
- 300 random sequence pairs
- X-axsis: length of input
- Y-axsis: memory
- Cubic regressions shown

BRAliBase Benchmarking

[Wilm, et al. (Algorithms Mol Biol. 2006)]

- A carefully constructed set of sequence groups from the Rfam 7 release
- Groups contain 2,3,5,7,10 or 15 sequences
- Range in APSI from 39 to 50

BRAliBase Benchmarking

- SCI (Structure Conservation Index)
 - Measure of the percentage of bases that conserve structure
 - Uses AliFold to produce structure
- SCR (Structure Conservation Rate)
 - Similar to SCI
 - Uses input structure from the alignment
- SPS (Sum-of-Pairs Score)
 - Comparing with some reference, the ratio of the number of bases that are aligned in both the reference and the test alignment
 - Score of 1 means the alignments are exactly the same
- Compalign
 - Similar to SPS
 - Scores the bases not the locations in the sequence

BRAliBase Benchmarking

- LARA
 - Bauer, et αl. 2007
 - Results to follow from supplemental data
- FoldAlign
 - Torarinsson, et αl. 2007
- MAFFT
 - Katoh, et al. 2005
- STRAL
 - Dalli, et αl. 2006
- MARNA
 - Siebert and Backofen, 2005

BRAliBase Benchmarking SCI Results

BRAliBase Benchmarking SCR Results

BRAliBase Benchmarking SPS Results

BRAliBase Benchmarking Compalign Results

Reconstructing the Rfam database to show that PMFastR produces high quality alignments

- Downloaded all families from Rfam 8.1
- Assigned the structure to one of the sequences
- Aligned remaining sequences using PMFastR
- SPS and SCR benchmarks shown

Conclusion

Conclusion

- Multiple alignment in a low amount of space using structure information for only one sequence
- Results comparable to hand made alignments
- Publicly available along with detailed results at http://genome.ucf.edu/PMFastR

PMFastR

PMFastR

Paper

Multiple Alignment using Sequence Structure for Very Long Sequences

Abstract:Many programs are available for the individual tasks of multiple alignment or sequence structure alignments. Here we present an algorithm based on FastR that not only does a multiple alignment using sequence structure, but it is done in such a way that the memory consumption is low enough for large sequences such as 16S and 23S rRNA. The algorithm also provides a method to utilize a multicore environment. We provide results with an emperical and real world comparisons to commonly used alignment references.

(pdf

Suplemental Data

Rfam Comparison (link) (with CMBuild-refine) Overlap Comparison (link) BRAliBase Analysis (link) Source Code (tar.gz)

Future Work

- Remove the Refinement step and work that into each iteration
- Apply the PMFastR algorithm to a database search
- What if the input could be a multiple alignment rather than a single sequence?

