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Parameter advising
Aligners often use one default parameter choice for all 
inputs.

• The default attempts to have good average accuracy 
across benchmarks.

• An optimal default choice can be found by inverse 
alignment [Kececioglu and Kim 2007].

• The default may be a poor choice for specific inputs.
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Can we boost aligner accuracy 
by an input-dependent choice 
of parameter values?



Parameter advising

An advisor has two ingredients:

(1) the advisor set of parameter choices used to generate 
candidate alignments, and

(2) an advisor estimator that ranks alignments by 
estimated accuracy.

The Alignment Process with  Parameter Advising
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Accuracy estimator

Our accuracy estimator Facet (Feature-based Accuracy Estimator) is 
• a linear combination 
• of real-valued feature functions
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Parameter advising

Parameter advising is selecting a parameter choice p 
from a set P to maximize the accuracy of an aligner T.

• Given estimator Ec , an advisor finds a parameter 
choice     for input sequences S.

• The oracle is a perfect advisor that uses true accuracy.

p̃
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p̃ := argmax
p ∈ P

Ec

(
Tp(S)

)



Problems

Finding a parameter advisor involves solving two 
problems:

• learning advisor coefficients, and

• finding a advisor set of parameter choices.
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Problems

There is an issue with defining the accuracy of an advisor when 
there are ties in estimator value:

• In practice the advisor selects among the alignments that 
have maximum estimator value.  

• When learning an advisor we want to maximize the 
expected accuracy.
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Problems

We learn the estimator using examples consisting of

• an alignment Aij produced by aligning benchmark i using 
parameter choice j, 

• the associated feature vector Fij  = F(Aij),

• the true accuracy aij  of Aij.

To correct for bias in easy benchmarks we assign a weight 
wi to each.
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Problems

A parameter choice i consists of an assignment of the 
values of the alignment parameters.

• For Opal a parameter choice is a 5-tuple

• The universe U is a collection of these parameter 
choices.
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(σ, γI , γE ,λI ,λE)



Problems

• The potential output set of parameter choices for the advisor on 
benchmark i with parameter set P is

where

• The expected accuracy of the advisor is the average accuracy over 
these parameter choices
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Ai(P ) :=
1

|Oi(P )|
∑

j∈Oi(P )

aij

e∗i := max
{
Ec(Aij̃) : j̃ ∈ P

}

Oi(P ) :=
{
j ∈ P : Ec(Aij) ≥ e∗i − ϵ

}



Advisor Sets

The input to the Advisor Set problem is

• cardinality bound k, 

• benchmark weights wi, where                    ,  0 ≤ wi ≤1

• accuracies aij, where 0 ≤ aij≤1

• feature vectors Fij = (fij1, fij2,··· , fijt), where 0≤ fijh ≤1 

• error tolerance ε≥0 

• estimator coefficients c  = ( c1 , ... , ct   ), 
where each ci  ≥ 0 and                , and

• universe of parameters choices U.
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∑

i

wi = 1

∑

i

ci = 1



Advisor Sets

The output is 

• a set P ⊆ U of parameter choices, where |P  | ≤ k that 

maximizes the objective function
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The Advisor Set problem is NP-complete.

∑

i

wiAi(P )



Finding advisor sets

Advisor Set can be modeled as an integer linear program.

• ILP cannot be solved to optimality in a reasonable 
amount of time.

• Optimal sets for small cardinalities k can be found by 
exhaustive search.

We have an approximation algorithm that

• finds an    -approximation of the optimal advisor set,

• for any constant l≤k.

The approximation ratio is tight for tolerance ε = 0. 13

l

k



Advisor Estimator	



The input to the Advisor Estimator problem is 

• weights wi on the benchmarks,

• accuracies aij of the alternate alignments,

• feature vectors Fij for the alternate alignments,

• error tolerance ε, and

• advisor set     P  of parameter choices.
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Advisor Estimator

The output is

• estimator coefficient vector c  = ( c1 , ... , ct   ),  where 

each ci  ≥ 0  and                  that maximizes the 

objective function 
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The Advisor Estimator problem is NP-complete.

∑

i
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∑

i

ci = 1



Learning the estimator

To learn the estimator we find optimal coefficients that fit

• accuracy values of the examples, or

• accuracy differences on pairs of examples.
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Experimental results: Advisor estimator

Best features trend well with accuracy.
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Facet estimator has better spread than its features.



Experimental results: Advisor estimator

For parameter advising, an estimator needs to have good 
slope and spread.

Known estimators display very different trends.
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Experimental results: Advisor estimator
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Advising accuracy of various accuracy estimators 

As the cardinality of P increases, Facet accuracy increases.



Experimental results: Advisor sets

The greedy set is essentially as good as the optimal exact set.
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Advising accuracy on oracle, exact and greedy parameter sets 



Experimental results: Advisor sets

Finding advisor sets improves accuracy of other estimators.
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Advising accuracy on oracle, exact and greedy parameter sets 



Summary

Our current work has made the following contributions:

• New estimator Facet that is significantly more 
accurate for parameter advising

• Problem formulations for learning an advisor that are 
NP-complete

• Difference-fitting technique for estimator coefficients 
that is close to optimal

• Approximation algorithm for advisor sets that is close 
to optimal
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Further research

• Develop a core column predictor for feature 
functions

• Extend the estimator from protein to DNA 
alignments

• Expand the definition of a parameter choice to 
include the aligner.
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Feature functions
There are three types of protein secondary structure

• α-helix, 

• β-strand,

• coil.

25http://www.ebi.ac.uk/training/online/
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Secondary structure blockiness

A block B in alignment A is

• an interval of at least l columns,

• a subset of at least k rows,

• with the same secondary structure for all positions in B.
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Secondary structure blockiness

A packing P  for alignment A is

• a set of blocks from A,

• whose columns are disjoint.

The value of P is the number of substitutions it contains.
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Secondary structure blockiness

The blockiness score of an alignment is 

• the maximum value of any packing P of an alignment A

• normalized by the total number of substitutions in the 
alignment
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Theorem (Evaluating Blockiness)

Blockiness can be computed in O(mn) time, 
for an alignment with m rows and n columns.

Algorithm

Secondary Structure Blockiness
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3 4 5

minimum width l = 3

G

• Graph construction takes O(mn) time.
• Graph has O(n) nodes, O(ln) edges
• Longest path takes O(n) time.
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In all bins, Facet outperforms all estimators.

Results

Average accuracy of advisors by default parameter bin
+20%

Facet
Default



Motivation

Alignment accuracy is measured with respect to a 
reference alignment.

• accuracy is the fraction of substitutions of the reference 
that are in the computed alignment,

• measured on the core columns of the reference.

... a D E hs ...

... d S R -d ...

... a N H lt ...

... a D E h - s ...

... d S R - - d ...

... a N - H l t ...

reference
alignment

computed
alignment

66.7%
accuracy



Contributions
Our approach Facet (“Feature-based ACcuracy EsTimator”)

• estimates accuracy by a polynomial on the features,

• efficiently learns the polynomial coefficients from examples,

• uses novel features that are fast to evaluate,

• utilizes an optimal feature subset.

Applied to parameter advising, Facet:

• finds an optimal parameter set of a given cardinality,

• outperforms other estimators in accuracy across the full 
range of benchmarks,

• boosts aligner accuracy on hard benchmarks by 20% over 
the best default parameter choice.



Optimal Advisor

The input is

• cardinality bound k, 

• weights wi on the benchmarks,

• accuracies aij of the alternate alignments,

• feature vectors Fij for the alternate alignments, and

• an error tolerance ε,

Output 

• set P ⊆ {1  , ... , m} of parameter choices where |P  | ≤ k, and

• estimator coefficients c  = ( c1 , ... , cl   ) ∈ Q
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Learning the estimator

Difference-fitting tries to find a monotonic estimator that 
matches positive differences in true accuracy.
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all possible coefficientsall important pairs of 
examples

true accuracy differenceestimated difference

only penalize underestimating 
differences

c∗ := argmin
c ∈ Rt

∑

(A,B) ∈ P

wAB

(
max

{(
F (B)−F (A)

)
−
(
Ec(B)−Ec(A)

)
, 0

})p

controls influence 
of large errors


