Learning Advisors for Multiple Sequence Alignment

Dan DeBlasio John Kececioglu

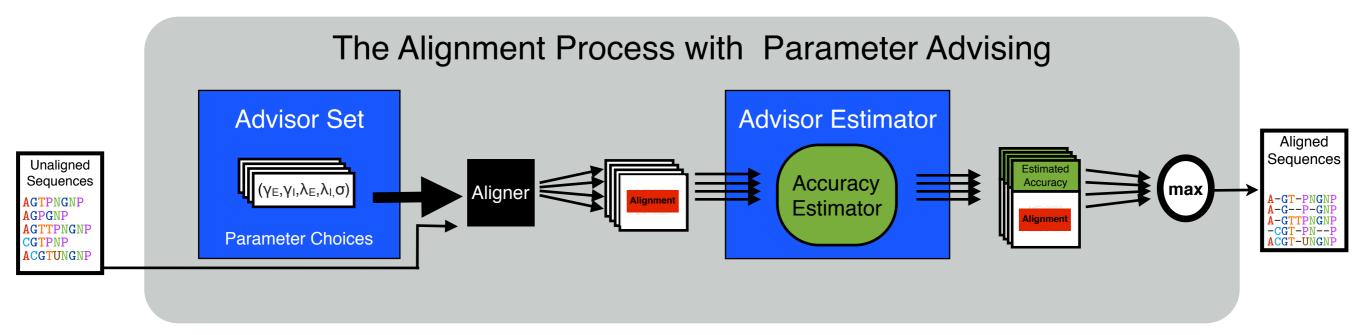
Department of Computer Science, University of Arizona

Aligners often use one default parameter choice for all inputs.

- The default attempts to have good average accuracy across benchmarks.
- An optimal default choice can be found by inverse alignment [Kececioglu and Kim 2007].
- The default may be a poor choice for specific inputs.

Can we boost aligner accuracy by an input-dependent choice of parameter values?

Parameter advising

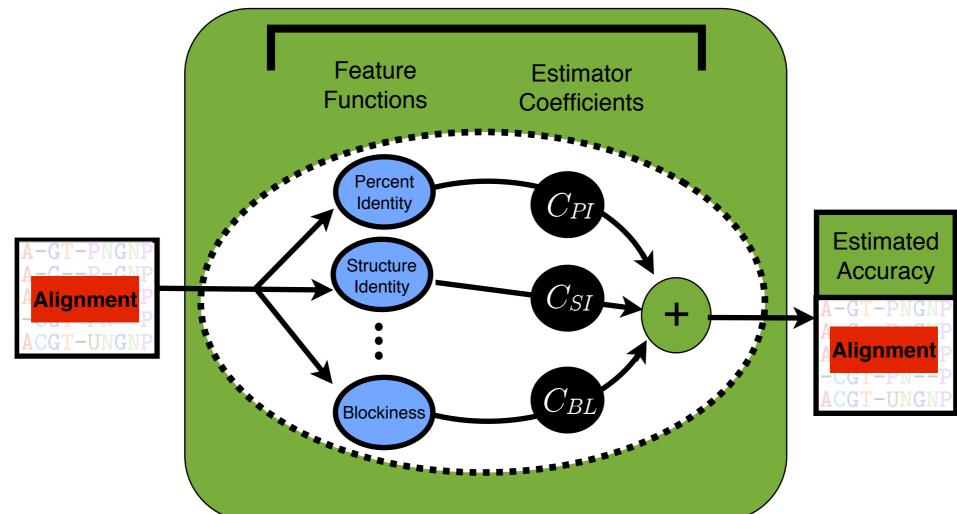


An advisor has two ingredients:

- (1) the advisor set of parameter choices used to generate candidate alignments, and
- (2) an advisor estimator that ranks alignments by estimated accuracy.

Accuracy estimator

Facet



Our accuracy estimator Facet (Feature-based Accuracy Estimator) is

- a linear combination
- of real-valued feature functions

Parameter advising is selecting a parameter choice p from a set P to maximize the accuracy of an aligner \mathcal{T} .

• Given estimator E_c , an advisor finds a parameter choice \tilde{p} for input sequences S.

$$\tilde{p} := \operatorname{argmax}_{p \in P} E_c \left(\mathcal{T}_p(S) \right)$$

• The oracle is a perfect advisor that uses true accuracy.

Finding a parameter advisor involves solving two problems:

- learning advisor coefficients, and
- finding a advisor set of parameter choices.

There is an issue with defining the accuracy of an advisor when there are ties in estimator value:

- In practice the advisor selects among the alignments that have maximum estimator value.
- When learning an advisor we want to maximize the expected accuracy.

Problems

We learn the estimator using examples consisting of

- an alignment A_{ij} produced by aligning benchmark i using parameter choice j,
- the associated feature vector $F_{ij} = F(A_{ij})$,
- the true accuracy a_{ij} of A_{ij} .

To correct for bias in easy benchmarks we assign a weight w_i to each.

A parameter choice i consists of an assignment of the values of the alignment parameters.

• For Opal a parameter choice is a 5-tuple

 $(\sigma, \gamma_I, \gamma_E, \lambda_I, \lambda_E)$

 \bullet The universe U is a collection of these parameter choices.

Problems

• The potential output set of parameter choices for the advisor on benchmark i with parameter set P is

$$\mathcal{O}_i(P) := \left\{ j \in P : E_c(A_{ij}) \ge e_i^* - \epsilon \right\}$$

where

$$e_i^* := \max\left\{E_c(A_{i\tilde{j}}) : \tilde{j} \in P\right\}$$

• The expected accuracy of the advisor is the average accuracy over these parameter choices

$$\mathcal{A}_i(P) := \frac{1}{|\mathcal{O}_i(P)|} \sum_{j \in \mathcal{O}_i(P)} a_{ij}$$

Advisor Sets

The input to the Advisor Set problem is

- cardinality bound k,
- benchmark weights w_i , where $\sum w_i = 1$, $0 \le w_i \le 1$
- accuracies a_{ij} , where $0 \le a_{ij} \le 1$
- feature vectors $F_{ij} = (f_{ij_1}, f_{ij_2}, \dots, f_{ijt})$, where $0 \le f_{ijh} \le 1$
- error tolerance $\epsilon \geq 0$
- estimator coefficients $c = (c_1, ..., c_t)$, where each $c_i \ge 0$ and $\sum_i c_i = 1$, and
- \bullet universe of parameters choices $U\!.$

The output is

• a set $P \subseteq U$ of parameter choices, where $|P| \leq k$ that

maximizes the objective function

$$\sum_{i} w_i \mathcal{A}_i(P)$$

The Advisor Set problem is NP-complete.

Finding advisor sets

Advisor Set can be modeled as an integer linear program.

- ILP cannot be solved to optimality in a reasonable amount of time.
- Optimal sets for small cardinalities k can be found by exhaustive search.

We have an approximation algorithm that

- finds an $\frac{l}{k}$ -approximation of the optimal advisor set,
- for any constant $l \leq k$.

The approximation ratio is tight for tolerance $\varepsilon = 0$.

The input to the Advisor Estimator problem is

- weights w_i on the benchmarks,
- accuracies a_{ij} of the alternate alignments,
- feature vectors F_{ij} for the alternate alignments,
- error tolerance ε, and
- advisor set P of parameter choices.

Advisor Estimator

The output is

• estimator coefficient vector $c = (c_1, ..., c_t)$, where

each
$$c_i \ge 0$$
 and $\sum_i c_i = 1$ that maximizes the objective function

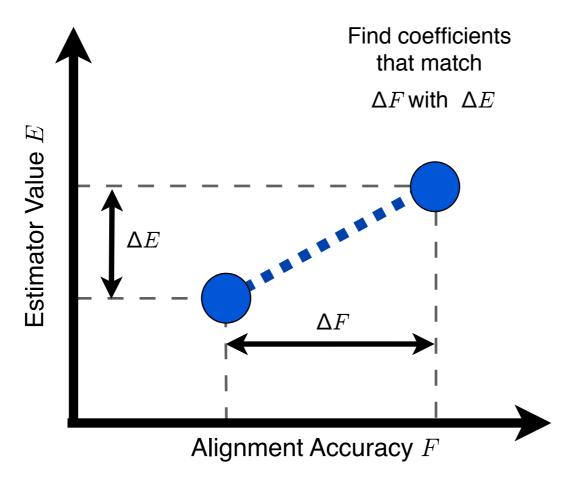
$$\sum_{i} w_i \mathcal{A}_i(P)$$

The Advisor Estimator problem is NP-complete.

Learning the estimator

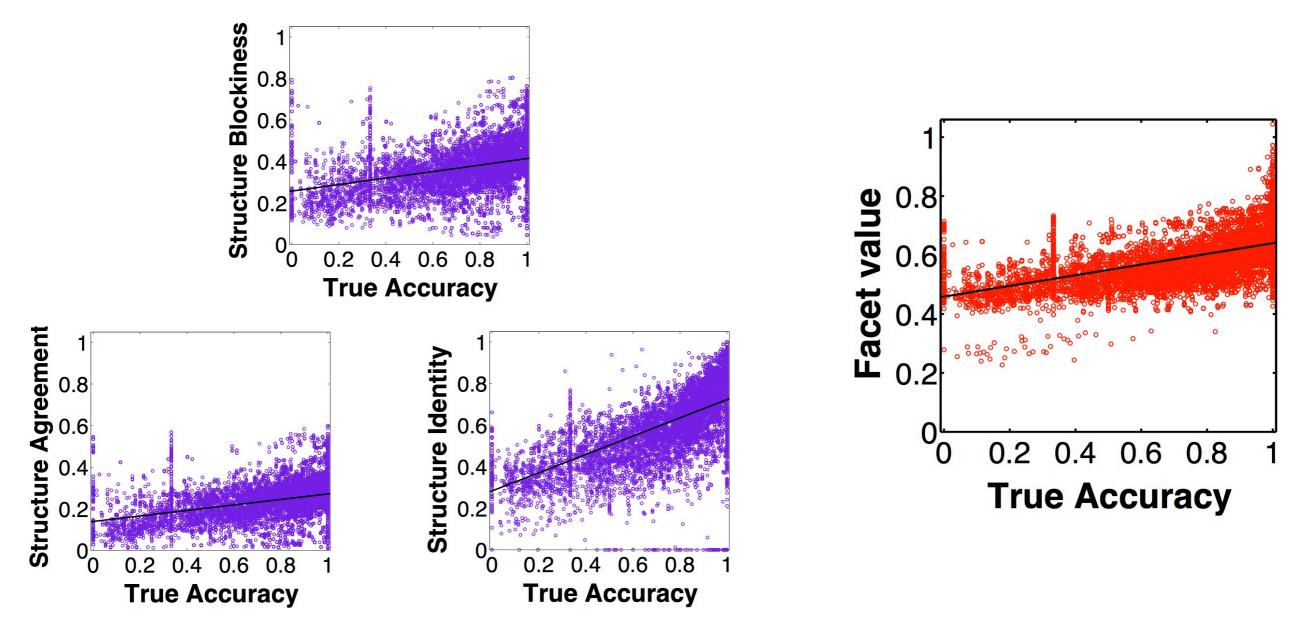
To learn the estimator we find optimal coefficients that fit

- accuracy values of the examples, or
- accuracy differences on pairs of examples.



Experimental results: Advisor estimator

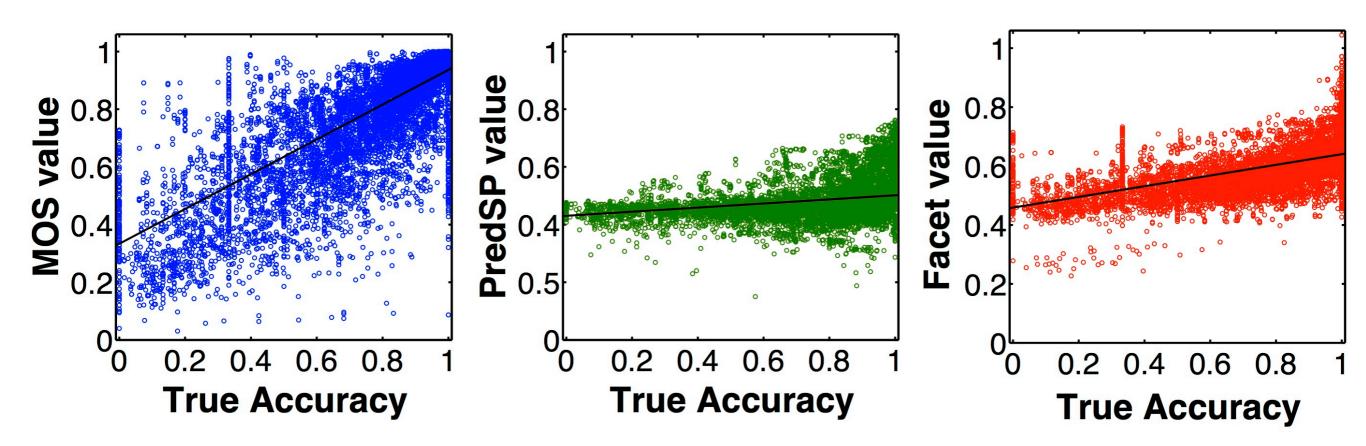
Best features trend well with accuracy.



Facet estimator has better spread than its features.

Experimental results: Advisor estimator

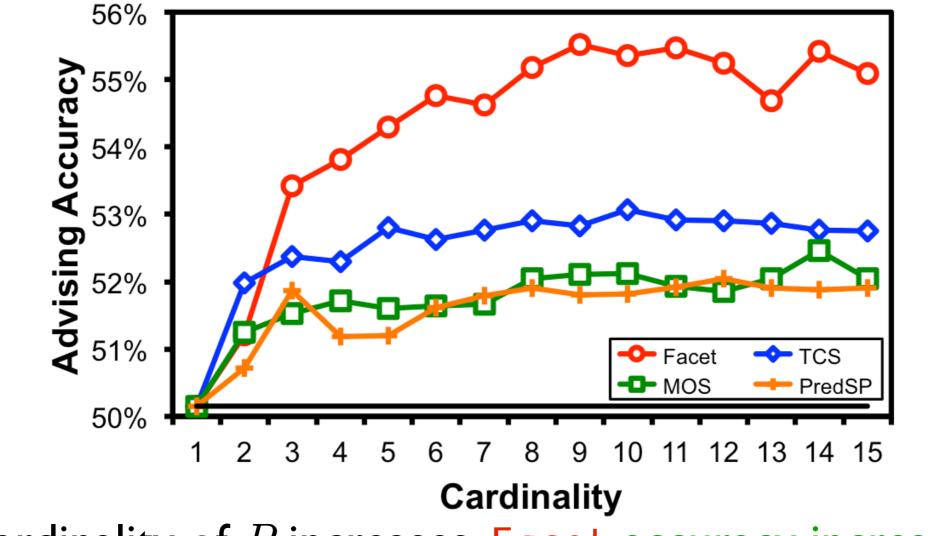
Known estimators display very different trends.



For parameter advising, an estimator needs to have good slope and spread.

Experimental results: Advisor estimator

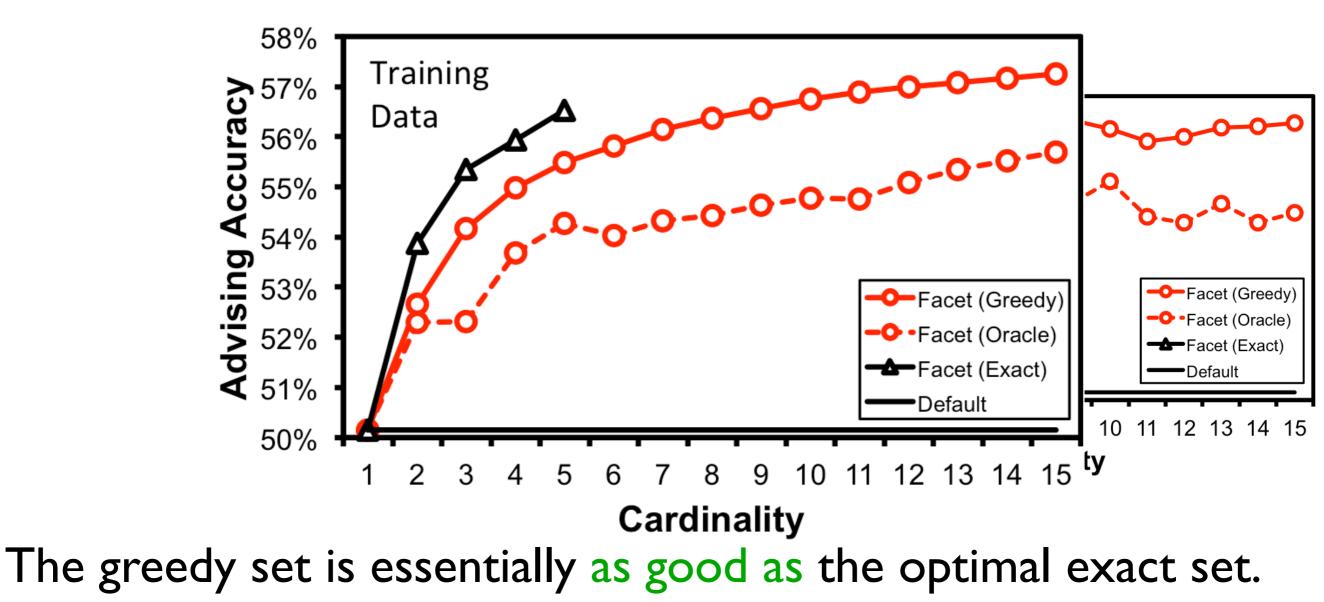
Advising accuracy of various accuracy estimators



As the cardinality of P increases, Facet accuracy increases.

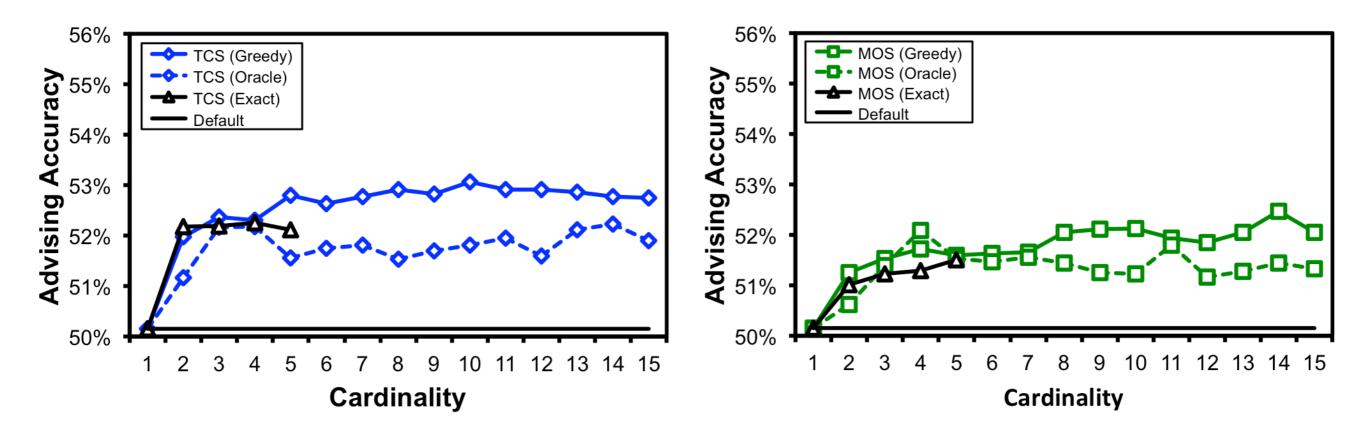
Experimental results: Advisor sets

Advising accuracy on oracle, exact and greedy parameter sets



Experimental results: Advisor sets

Advising accuracy on oracle, exact and greedy parameter sets



Finding advisor sets improves accuracy of other estimators.

Our current work has made the following contributions:

- New estimator Facet that is significantly more accurate for parameter advising
- Problem formulations for learning an advisor that are NP-complete
- Difference-fitting technique for estimator coefficients that is close to optimal
- Approximation algorithm for advisor sets that is close to optimal

Further research

- Develop a core column predictor for feature functions
- Extend the estimator from protein to DNA alignments
- Expand the definition of a parameter choice to include the aligner.

Thank you

People

- Travis Wheeler
 HHMI Janelia Farm
- Vladimir Filkov UC Davis
- Thesis Committee Members:
 - Alon Efrat, CS
 - Stephen Kobourov, CS
 - Mike Sanderson, EEB

Come see my poster Today: <u>31</u> Sunday: <u>N25</u>

Funding

- NSF Grant IIS-1217886
- ISCB Student Council Travel Grant

iscastudent coouncil NTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY

Feature functions

There are three types of protein secondary structure

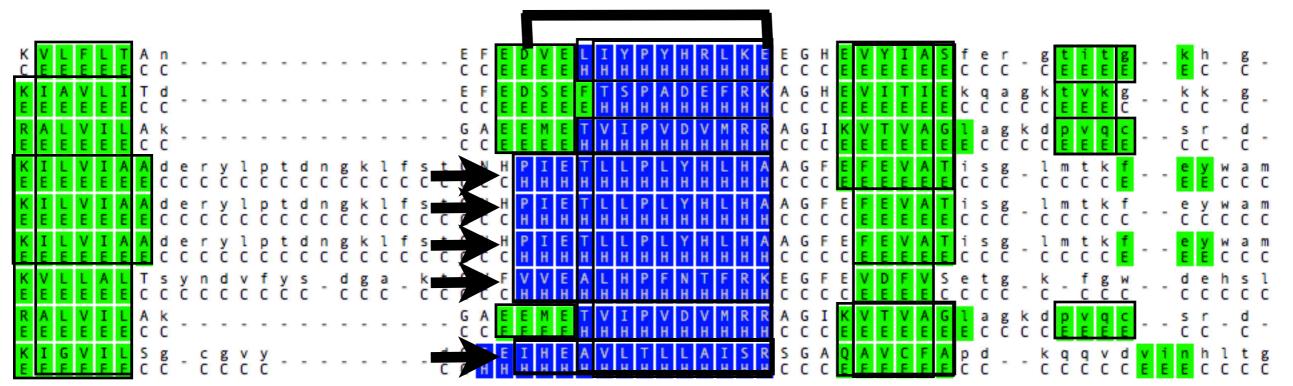
- α -helix,
- β -strand,
- coil.

K V L F L T A	n	E F E D V E L I Y P Y	HRLKEEGHEVYIAS fer gtitg - kh g
C E E E E E C	C		HHHHHCCCEEEEECCCCCEEEE
K I A V L I T	d	E F E D S E F T S P A	DEFRKAGHEVITIE kqagktvkg - kk g-
E E E E E E C		C C E E E E E H H H H	ннннн CCCEEEEECCCCCCEEEC - CC - C
R A L V I L A	к	G A E E M E T V I P V	DVMRRAGIKVTVAGlagkdpvqc - sr d
E E E E E E C	с	C C E E E E H H H H H	HHHHHCCCEEEEECCCCEEEE
K I L V I A A	derylptdng	к l f s t G N H <mark>P I E T L L P L</mark>	<mark>ҮНLНА</mark> АGF <mark>EFEVАТ</mark> isg_lmtkf <mark>еу</mark> wат
E E E E E E E	CCCCCCCCCC	С С С С С С С С Н Н Н Н Н Н Н Н	НННННСССЕЕЕЕЕЕССС ССССЕ ЕЕССС
K I L V I A A	derylptdng	к l f s t G N H <mark>P I E T L L P L</mark>	YHLHAAGFE <mark>FEVAT</mark> isg lmtkf eywam
E E E E E E E	CCCCCCCCCC	С С С С С С С С Н Н Н Н Н Н Н Н	НННННССССЕЕЕЕЕССС ССССС ССССС
K I L V I A A	derylptdng	к l f s t G N H <mark>P I E T L L P L</mark>	YHLHAAGFE <mark>FEVAT</mark> isg lmtkf <mark>ey</mark> wam
E E E E E E E	CCCCCCCCCC	С С С С С С С С Н Н Н Н Н Н Н Н	НННННССССЕЕЕЕЕССС ССССЕ ЕЕССС
K V L L A L T	syndvfys ₋ d	Iga ktGVF <mark>VVEALHPF</mark>	NTFRKEGFE <mark>VDFV</mark> Setgkfgwdehsl
E E E E E E C	CCCCCCCC	CC ⁻ CCCCC <mark>HHHH</mark> HHHH	HHHHHCCCCC <mark>EEEE</mark> CCCC ⁻ CCCC ⁻ CCCCC
RALVILA	k	G A E E M E T V I P V	DVMRRAGIKVTVAGlagkdpvqc - sr d
EEEEEEC			HHHHHCCCEEEEECCCCEEEE
K I G V I L S	g - c g v y	d G S E I H E A V L T L	LAISRSGAQAVCFApd kqqvdvinhltg
E E E E E E C	C - C C C C	С С H H H H H H H H H H H	НННННСССЕЕЕЕЕСС ССССЕЕЕСССС
http://www.ebi.ac.uk/training/online/ 25			

http://www.ebi.ac.uk/training/online/

Secondary structure blockiness

- A block ${\cal B}$ in alignment ${\cal A}$ is
- an interval of at least l columns,
- \bullet a subset of at least k rows,
- with the same secondary structure for all positions in B.

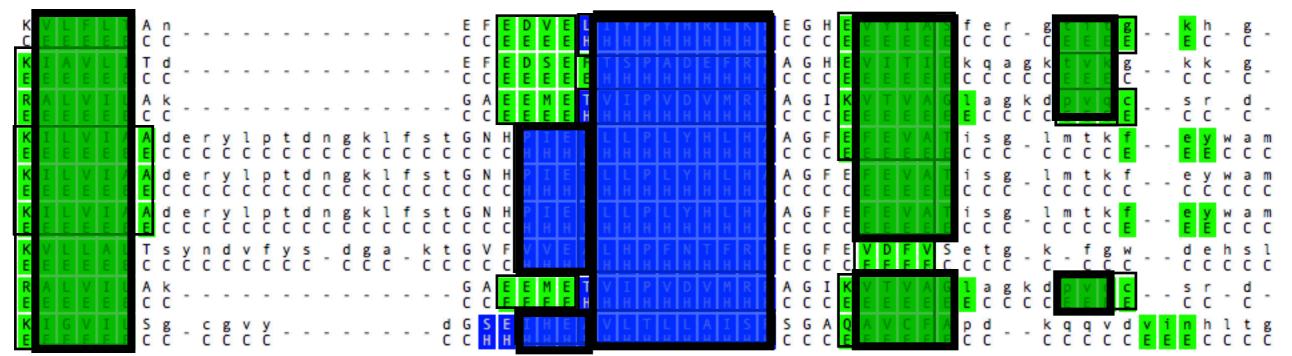


Secondary structure blockiness

A packing $P\,$ for alignment A is

- \bullet a set of blocks from A,
- whose columns are disjoint.

The value of P is the number of substitutions it contains.



Secondary structure blockiness

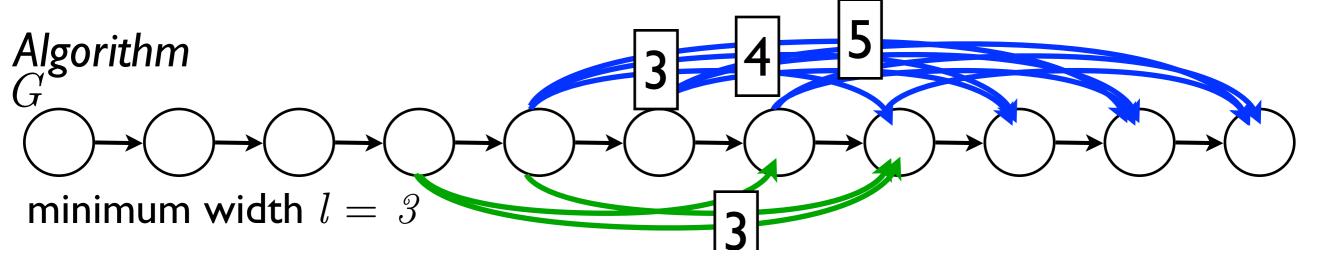
The blockiness score of an alignment is

- \bullet the maximum value of any packing P of an alignment A
- normalized by the total number of substitutions in the alignment

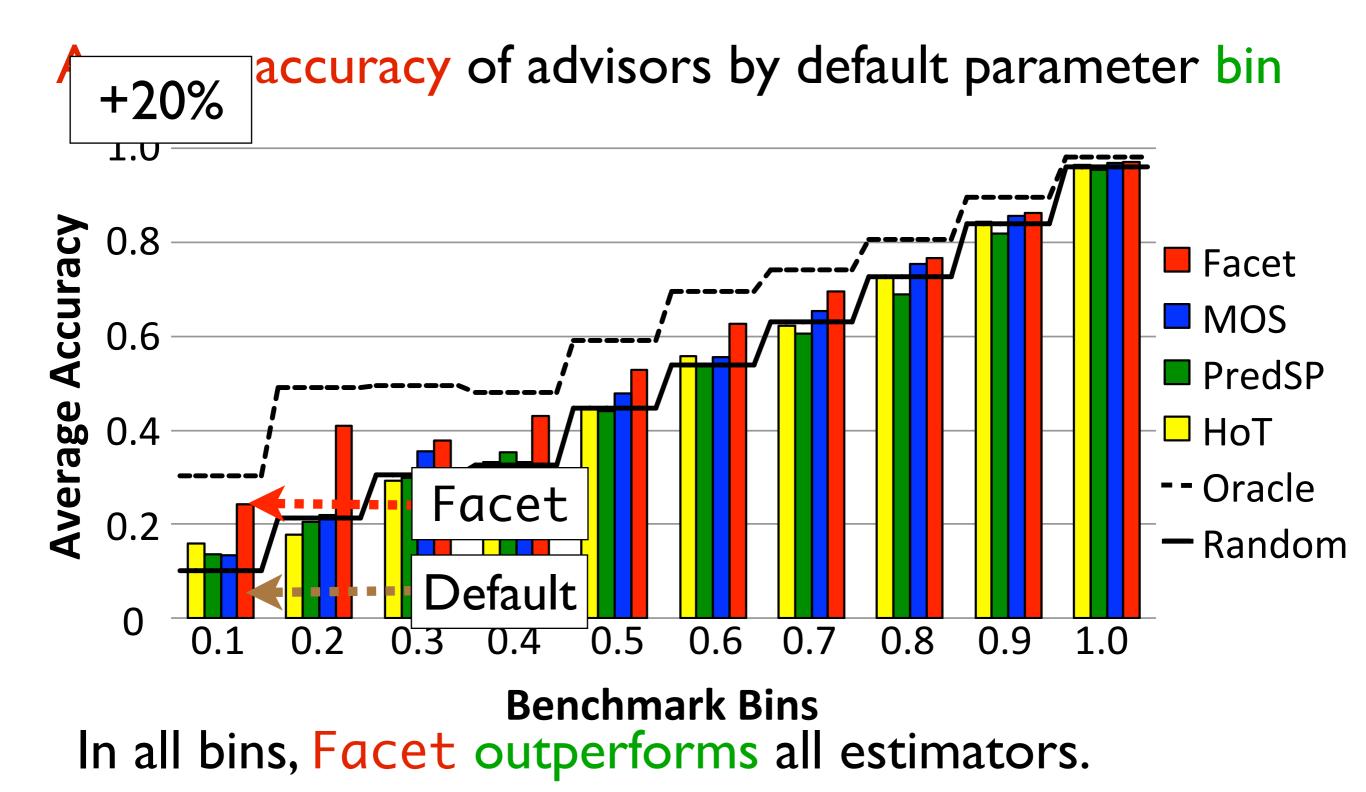
Secondary Structure Blockiness

Theorem (Evaluating Blockiness)

Blockiness can be computed in O(mn) time, for an alignment with m rows and n columns.

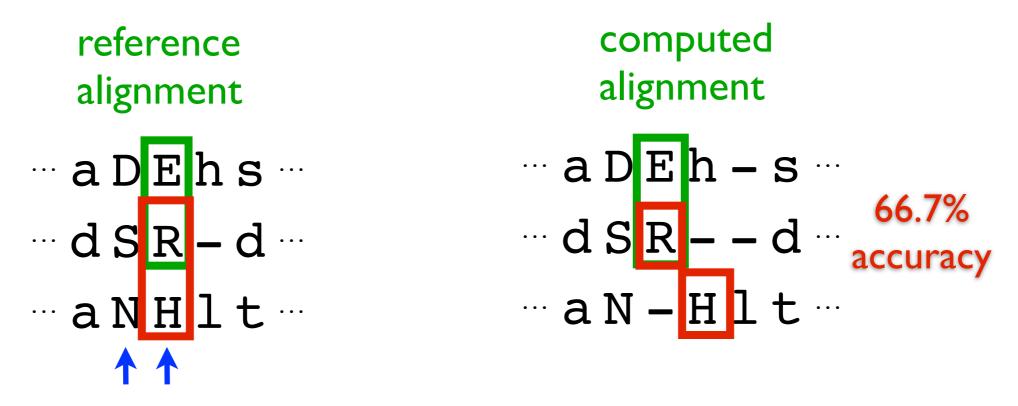


- Graph construction takes O(mn) time.
- Graph has O(n) nodes, O(ln) edges
- Longest path takes O(n) time.



Motivation

Alignment accuracy is measured with respect to a reference alignment.



- accuracy is the fraction of substitutions of the reference that are in the computed alignment,
- measured on the core columns of the reference.

Contributions

Our approach Facet ("Feature-based ACcuracy EsTimator")

- estimates accuracy by a polynomial on the features,
- efficiently learns the polynomial coefficients from examples,
- uses novel features that are fast to evaluate,
- utilizes an optimal feature subset.

Applied to parameter advising, Facet:

- finds an optimal parameter set of a given cardinality,
- outperforms other estimators in accuracy across the full range of benchmarks,
- boosts aligner accuracy on hard benchmarks by 20% over the best default parameter choice.

Optimal Advisor

The input is

- cardinality bound k,
- weights w_i on the benchmarks,
- accuracies a_{ij} of the alternate alignments,
- feature vectors F_{ij} for the alternate alignments, and
- an error tolerance ε ,

Output

- set $P \subseteq \{1, \ldots, m\}$ of parameter choices where $|P| \leq k$, and
- estimator coefficients $c = (c_1, ..., c_l) \in Q$

Learning the estimator

Difference-fitting tries to find a monotonic estimator that matches positive differences in true accuracy.

$$c^{*} := \underbrace{\operatorname{argmin}_{c \in \mathcal{R}^{t}} \sum_{(A,B) \in \mathcal{P}} w_{AB}}_{c \in \mathcal{R}^{t}} \underbrace{\max\left\{\left(F(B) - F(A)\right) - \left(E_{c}(B) - E_{c}(A)\right), 0\right\}}_{p}$$

all possible coefficients pairstrate accuracy diffestimate obsiffestimate of siffestimate of siffest on the second sec