Ensemble Multiple Sequence Alignment via Advising

<u>Dan DeBlasio</u> John Kececioglu

Department of Computer Science University of Arizona

Motivation

Multiple sequence alignment is a fundamental problem in bioinformatics.

- standard multiple sequence alignment is NP-Complete
- many popular aligners for multiple sequence alignment
- each aligner has many parameters whose values affect the accuracy of the alignment

How do we combine a collection of aligners and parameter choices into a new alignment method that is better than any single choice?

We approach this question through the framework of advising.

Advising

Advising for input sequences S is

- selecting the aligner \mathbbm{A} and parameter choice p from a set of pairs P
- that produces the alignment with highest estimated accuracy E.

Advice_P(S) := argmax
$$E(\mathbb{A}_p(S))$$

(\mathbb{A}, p) $\in P$

Advising variants

- General aligner advising [BCB'15]
 - Selecting from a set of aligners and multiple parameter settings.
- Default aligner advising [BCB'15]
 - Selecting from a set of aligners that use their default parameter setting.
- Parameter advising [Kececioglu and DeBlasio 2013]
 - Selecting from a set of parameter choices for a single aligner.

Advising variants

• General aligner advising [BCB'15]

• Selecting from a set of aligners and multiple parameter settings.

• Default aligner advising [BCB'15]

• Selecting from a set of aligners that use their default parameter setting.

Default advising and general advising yield two forms of ensemble alignment.

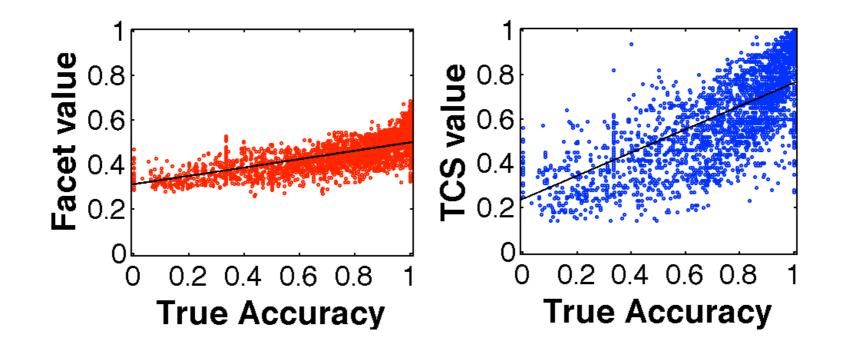
Advising

Alignment accuracy is measured with respect to a reference alignment.

reference alignment

- ··· a **D** E h s ···
- ··· d <mark>S R –</mark> d ···

… aNHlt… ↑↑ computed alignment


- ··· a D E h s ···
- $\cdots dSR - d \cdots = \frac{66\%}{Accuracy}$
- ··· a N H l t ···

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,
- measured on the core columns of the reference.

Accuracy estimators

The best estimators of alignment accuracy without a reference include:

- MOS [Lassmann and Sonnhammer, 2005]
- PredSP [Ahola, *et al.*, 2008]
- Guidance [Penn, et al., 2010]
- Facet [Kececioglu and DeBlasio, 2013]
- TCS [Chang, Tommaso and Notredame, 2014]

Accuracy estimators

The best estimators of alignment accuracy without a reference include:

- MOS [Lassmann and Sonnhammer, 2005]
- PredSP [Ahola, *et al.*, 2008]
- Guidance [Penn, et al., 2010]
- Facet [Kececioglu and DeBlasio, 2013]
- TCS [Chang, Tommaso and Notredame, 2014]

An oracle is a *perfect* advisor whose "estimator" is true accuracy.

Advising

An advisor has two components:

- an accuracy estimator E(A), and
- a set of aligner and parameter choice pairs *P*.

Given accuracy estimator *E*, what is the optimal set *P* of pairs?

For the Advisor Set problem the input is

- universe of aligners and parameters choices U,
- cardinality bound k,
- estimator values, accuracies, and weights for all examples.

The output is

• an optimal set $P \subseteq U$ of aligners and parameter choices with $|P| \leq k$, that maximizes the average advising accuracy

$$\sum_{\text{Benchmark } i} w_i \operatorname{Accuracy} \left(\operatorname{Advice}_P \left(S_i \right) \right)$$

Advisor Set problem

THEOREM [DeBlasio and Kececioglu 2014]

The Advisor Set problem is NP-complete.

- Polynomial-time solvable for fixed k
- Optimal oracle sets can be found in practice for very large k

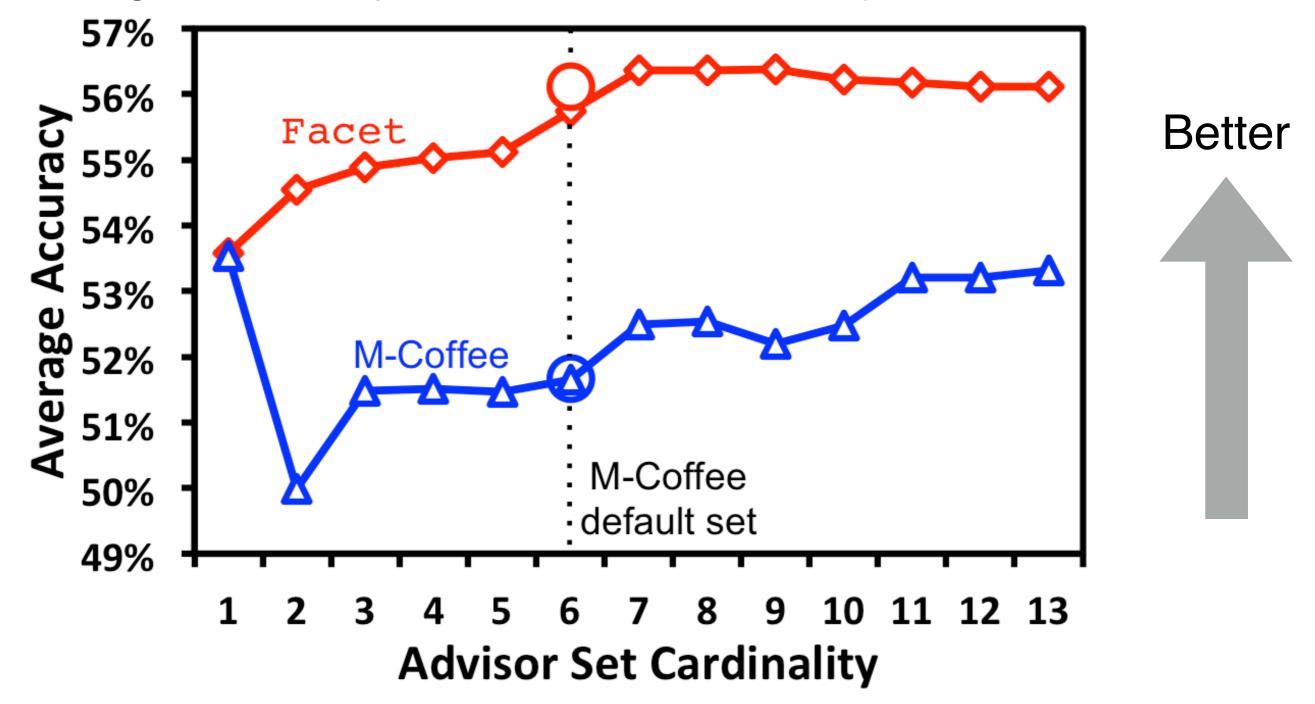
Approximation algorithm

THEOREM [DeBlasio and Kececioglu 2014]

There is an efficient greedy $\frac{\ell}{k}$ -approximation algorithm for Advisor Set, for any fixed $\ell \leq k$.

Related work

• AQUA [Muller, Creevey, Thompson, Arendt, and P. Bork 2010]


- Chooses between MAFFT and MUSCLE alignments of the same sequences using NorMD values.
- M-Coffee [Wallace, O'Sullivan, Higgins, and Notredame 2006]
 - •Aligns sequences using T-Coffee, whose scoring function combines the outputs of several aligners.
 - The authors call this approach meta-alignment.

We compare ensemble alignment using Facet to meta-alignment using M-Coffee.

- Used the 13 aligners included in M-Coffee.
- Found oracle sets of these aligners.
- Compared Facet and M-Coffee on the same oracle sets.
- The default setting for M-Coffee has 6 aligners.

Experimental results

Average accuracy versus set cardinality

Ensemble alignment significantly improves on meta-alignment

Default aligner advising

The universe for default aligner advising includes

- the most commonly-used aligners (17 tools),
- using their default parameter settings.

Default aligner advising

The 17 aligners are:

- •ClustalW (1994)
- •ClustalW2 (2007)
- •Clustal Omega(2011)
- DIALIGN-TX (2008)
- FSA (2009)
- •Kalign (2005)
- MAFFT (2005)
- MUMMALS (2006)
- MUSCLE (2004)

- •MSAProbs (2010)
- •Opal (2007)
- POA (2002)
- PRANK (2005)
- Probalign (2006)
- ProbCons (2005)
- SATé (2011)
- •**T-Coffee** (2000)

Default aligner advising

The 17 aligners are:

- •ClustalW (1994)
- •ClustalW2 (2007)
- Clustal Omega (2011)
- DIALIGN-TX (2008)
- **FSA** (2009)
- •Kalign (2005)
- MAFFT (2005)
- MUMMALS (2006)
- **MUSCLE** (2004)

- MSAProbs (2010)
- •**Opal** (2007)
- **POA** (2002)
- **PRANK** (2005)
- Probalign (2006)
- ProbCons (2005)
- SATÉ (2011)
- •**T-Coffee** (2000)

General aligner advising

Constructed a parameter universe for 10 aligners

• by finding their tunable parameters,

for the Opal aligner, a parameter choice is a 5-tuple $(\sigma, \gamma_I, \gamma_E, \lambda_I, \lambda_E)$

General aligner advising

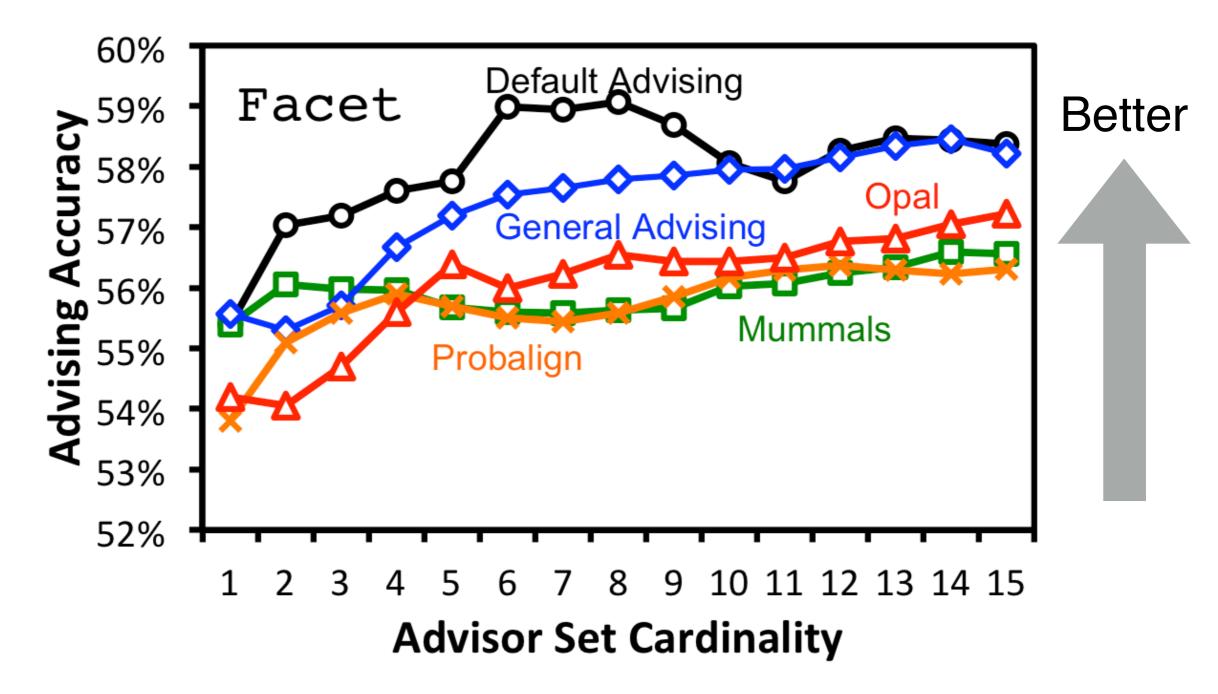
Constructed a parameter universe for 10 aligners

- by finding their tunable parameters,
- for numerical parameters, values cover range,
- for discrete parameters, enumerate all choices,
- goal of 100 parameter settings for each aligner.

We combine each of these with default aligner advising universe for general aligner advising.

Experimental results

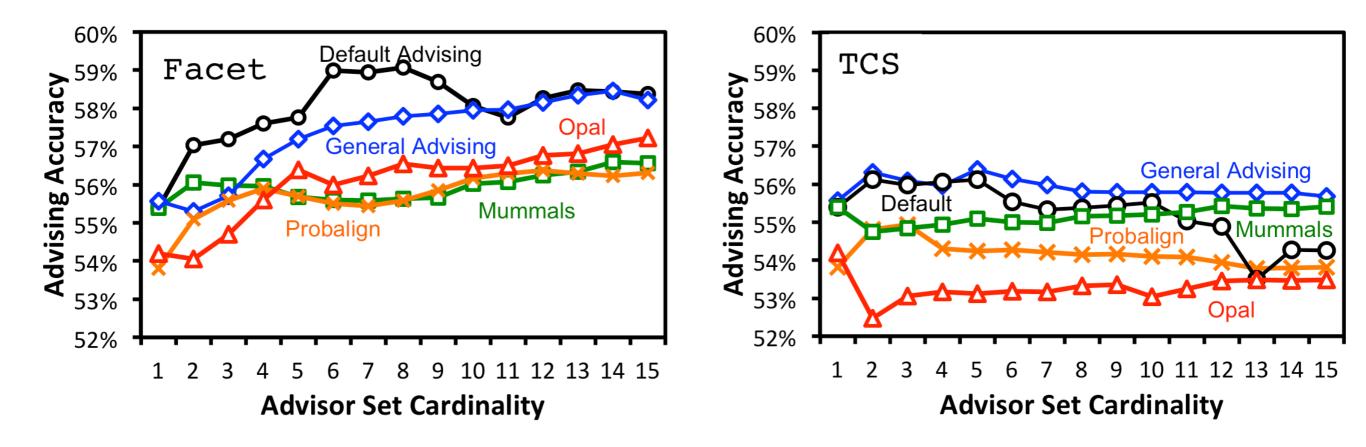
We evaluate the accuracy of advising


- with the Facet and TCS estimators,
- consider greedy advisor sets for both universes,
- on over 800 benchmarks from BENCH and PALI,
- using 12-fold cross-validation.

We correct for the bias in over-representation of easy-to-align benchmarks.

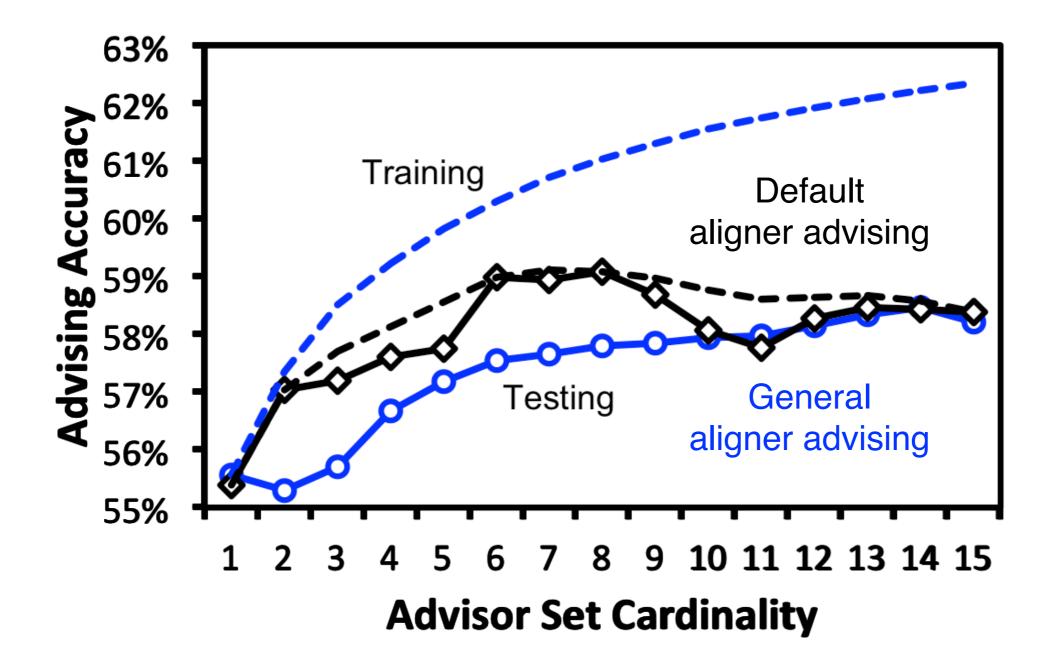
- The difficulty of a benchmark is its average accuracy under the default parameter setting for Clustal Omega, MAFFT, and ProbCons.
- Split the range of difficulties [0,1] into 10 bins.
- Report advisor accuracy uniformly averaged across bins.

The typical average accuracy is close to 50%.


Advisor performance versus set cardinality

Ensemble advising boosts accuracy over parameter advising

Experimental results


Advisor performance versus set cardinality

Facet outperforms TCS accuracy estimator

Experimental results

Advisor performance versus set cardinality

Default aligner advising sets generalize better

Ensemble alignment significantly increases accuracy.

- Advising yields the first successful ensemble method for alignment.
- Parameter advising boosts accuracy for nearly all standard aligners.
- Aligner advising further improves upon parameter advising.

Future directions for ensemble alignment include:

- Learning advisor sets with improved generalization
- Developing more accurate estimators
- Extending to aligning DNA and RNA sequences

Available for download:

- Facet estimator
- Ensemble alignment tool
- Precomputed ensemble sets for all aligners
- Benchmark suites with structure predictions

facet.cs.arizona.edu

Acknowledgments

People

William Pearson

Travis Wheeler

Funding

- University of Arizona
 NSF IGERT in Genomics
 Grant DGE-0654435
- NSF Grant IIS-1217886

