Learning Parameter Sets for Alignment Advising

<u>Dan DeBlasio</u> John Kececioglu

Department of Computer Science University of Arizona

Motivation

Multiple sequence alignment is a fundamental problem in bioinformatics.

- multiple sequence alignment is NP-Complete
- many popular aligners for multiple sequence alignment
- each aligner has many parameters whose values affect the accuracy of the alignment

default
... gsvenrarlvlevvdavcnewsad-RIGIRVSPigtfqnvdngpnee--adalyl--- ...
... ydfeatekllke----vftfftk-PLGVKLPPyf------dlvhfdim ...
... gsienrarftlevvdalveaighe-KVGLRLSPygvfnsmsggaetgivaqyayvage ...
... gslenrarfwletlekvkhavgsdcAIATRFGV------dtvygpgq ...
... tdpevaaalvka-----ckavskv-PLYVKLSPnvt------divpiaka ...
... yl-lhqflspssnqrtdqyggsvenrarlvlevvdavcnewsad-RIGIRVSPigtfq ...
... kP-LGVKLPPyf--dlvhfdimaeilnqfpltyvsnv-nsig----nglfidpeaesv ...
yl-lnqfldphsntrtdeyggsienrarftlevvdalveaighe-KVGLRLSPygvfn ...
... yl-plqflnpyynkrtdkyggslenrarfwletlekvkhavgsdcAIATRF---GVdt ...

... kv**PLYVKLSP**nv-tdivpiakaveaagadgltmintl-----mgvrfdlktrqp ...

Motivation

Alignment accuracy is measured with respect to a reference alignment.

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,
- measured on the core columns of the reference.

Accuracy estimators

The best estimators of alignment accuracy without a reference include:

- MOS [Lassmann and Sonnhammer, 2005]
- PredSP [Ahola, *et al.*, 2008]
- Guidance [Penn, et al., 2010]
- Facet [Kececioglu and DeBlasio, 2013]
- TCS [Chang, Tommaso and Notredame, 2014]

Aligners often use *one* default parameter choice for *all* inputs.

- The default has good average accuracy across all benchmarks.
- The optimal default choice can be found by inverse alignment [Kececioglu and Kim 2007].
- The default may be a poor choice for specific inputs.

Parameter advising for input sequences S is

- selecting the parameter choice p from a set P
- for which the alignment output by aligner $\mathbb A$
- has the highest value under estimator E.

Choice(P,S) :=
$$\underset{p \in P}{\operatorname{argmax}} E(\mathbb{A}_p(S))$$

An oracle is a *perfect* advisor whose "estimator" is true accuracy.

Parameter advising

A parameter advisor has two components:

- an accuracy estimator E(A), and
- a set of candidate parameter choices *P*.

Given accuracy estimator *E*, what is the *optimal set* of parameter choices *P*?

Advisor Set problem

Estimator Value

Advisor Set problem

Estimator Value

A parameter choice *j* assigns values to all parameters.

• For the Opal aligner, a parameter choice is a 5-tuple

• Universe U is the set of all parameter choices.

Advisor Set problem

Each benchmark *i* consists of:

- a set S_i of protein sequences, and
- its reference alignment.

To correct for bias in easy benchmarks we assign each a weight w_i .

We learn the advising set using examples consisting of

- an alignment $A_{ij} = \mathbb{A}_j(S_i)$
- the associated estimated accuracy $e_{ij} = E(A_{ij})$,
- the true accuracy a_{ij} of A_{ij} .

Advisor Set problem

Given these examples, we would like to find:

- over all subsets *P* of size at most *k* from the universe *U*,
- the optimal subset P* that has highest average advising accuracy on the benchmarks.

For ties in the estimator, the advisor accuracy is not well-defined.

- Consider the parameter choices that are tied for maximizing the estimator.
- We take the advisor's accuracy to be its expected value on these choices.
- To aid generalization, we include choices that are close to maximizing the estimator.

$$\operatorname{Accuracy}_i(P) :=$$

Average accuracy of alignments of benchmark *i* using parameters $j \in P$ where e_{ij} is within ϵ of the maximum For the Advisor Set problem the input is

- cardinality bound k,
- universe of parameters choices *U*,

along with the error tolerance, and for all examples, their estimator values, accuracies, and weights.

The output is

• an optimal set $P \subseteq U$ of parameter choices with $|P| \leq k$, that maximizes the objective function

$$\sum_{i} w_i \operatorname{Accuracy}_i(P)$$

Advisor Set problem

THEOREM (Problem Complexity)

The Advisor Set problem is NP-complete.

- Polynomial-time solvable for fixed k
- Reduction is from the Dominating Set problem
- Oracle sets can be found for all k in practice

Approximation algorithm

A natural greedy procedure finds good sets.

- (1) Start with an optimal set \tilde{P} of size at most ℓ
- (2) Find parameter choice p^* such that

$$p^* = \underset{p \in U - \tilde{P}}{\operatorname{argmax}} \left\{ \sum_{i} w_i \operatorname{Accuracy}_i \left(\tilde{P} \cup \{p\} \right) \right\}$$

- (3) Update $\tilde{P} := \tilde{P} \cup \{p^*\}$
- (4) Repeat (2) and (3) until $|\tilde{P}| = k$
- (5) Of all these \tilde{P} , return the best one under the objective function

Approximation algorithm

- An α-approximation algorithm
 - finds a feasible solution in polynomial-time
 - whose objective value is at least α times the optimal solution
 - where $\alpha < 1$ for a maximization problem
 - $\cdot \alpha$ is called the approximation ratio

Approximation algorithm

THEOREM (Approximation Algorithm)

The greedy procedure is an $\frac{\ell}{k}$ -approximation algorithm for Advisor Set, with constant ℓ and $\epsilon = 0$.

The approximation ratio $\frac{\ell}{k}$ is tight.

To evaluate the accuracy of advising, we consider:

- PredSP, MoS, Guidance, Facet, and TCS estimators,
- over 800 benchmarks from BENCH and PALI,
- a universe of over 200 parameter choices,
- evaluated with k-fold cross validation,
- advising for the Opal aligner.

We correct for the bias in over-representation of easy-to-align benchmarks.

- The difficulty of a benchmark is its accuracy under the default parameter setting.
- Split the range of difficulties [0,1] into 10 bins.
- Report advisor accuracy as the average across bins.

Average accuracy of advisors by difficulty bin

Boosts the accuracy on the hardest bins by almost 20%

Advisor performance versus parameter set cardinality

Advisor performance versus parameter set cardinality

Greedy sets generalize better than exact sets

Advising performance for various estimators

Advising performance for various estimators

Facet outperforms other accuracy estimators

Greedy parameter sets for Opal using Facet

Cardinality	Parameter choices (σ , γ_I , γ_E , λ_I , λ_E)	Average advising accuracy
1	(VTML200, 50,17, 41,40)	51.2%
2	(VTML200, 55, 30, 45, 42)	53.4%
3	(BLOSUM80, 60, 26, 43, 43)	54.5%
4	(VTML200, 60, 15, 41, 40)	55.2%
5	(VTML200, 55, 30, 41, 40)	55.6%

Sets include different families of substitution matrices

Parameter advising gives a significant improvement in alignment accuracy.

- Learning an optimal set for advising is NP-complete.
- A greedy approach yields an $\frac{c}{k}$ -approximation algorithm.
- Greedy sets generalize better than exact sets.
- On the hardest benchmarks, boosts the accuracy by almost 20%.

Further improvement in advising will not come from learning better parameter sets.

Promising directions include,

- Developing estimators that better correlate with true accuracy
- Extending to DNA sequence alignments
- Extending parameter advising to aligner advising

Available for download:

- Facet estimator tool
- Precomputed parameter sets for Opal aligner
- Benchmark suites with structure predictions

facet.cs.arizona.edu

Acknowledgments

People

William Pearson

Travis Wheeler

Funding

- University of Arizona
 NSF IGERT in Genomics
 Grant DGE-0654435
- US NSF Grant
 IIS-1217886
- ACM-BCB Conference
 Travel Grant

