
PARAMETER ADVISING FOR
MULTIPLE SEQUENCE ALIGNMENT

by

Daniel Frank DeBlasio

Copyright c© Daniel Frank DeBlasio 2016

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2016

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the disser-
tation prepared by Daniel Frank DeBlasio, entitled Parameter Advising for Multiple
Sequence Alignment and recommend that it be accepted as fulfilling the dissertation
requirement for the Degree of Doctor of Philosophy.

Date: 15 April 2016
John Kececioglu

Date: 15 April 2016
Alon Efrat

Date: 15 April 2016
Stephen Kobourov

Date: 15 April 2016
Mike Sanderson

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: 15 April 2016
Dissertation Director: John Kececioglu

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of the source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the copyright holder.

SIGNED: Daniel Frank DeBlasio

4

ACKNOWLEDGEMENTS

The work presented in this dissertation would not have been possible without the
influences of so many of the people around me. Most importantly I would not have
been able to do any of the work presented here without the constant support of my
advisor Dr. John Kececioglu. Dr. Kececioglu has supported me since we first met
at the RECOMB meeting here in Tucson in 2009. He has both encouraged me in
my research but also provided emotional (and financial) support along the way.

In addition, I would like to thank my dissertation committee Dr. Alon Efrat
Dr. Stephen Kobourov and Dr. Michael Sanderson who was my advisor for my
minor in Ecology and Evolutionary Biology. Dr. Kobourov in particular gave me
the opportunity to work on projects in his courses that were very much outside
the focus of my dissertation but were nonetheless very helpful to my comprehensive
knowledge of computer science.

I would also like to acknowledge the faculty and staff that were part of the
Integrative Graduate Research and Education Traineeship (IGERT) in Genomics.
In particular Dr. Noah Whiteman and Dr. Matt Sullivan who allowed me to do
rotations in their labs. Additionally, I would like to acknowledge Dr. Mike Barker
who along with Dr. Whiteman advised me in teaching the computational component
of their class. I would also like to thank the IGERT students who helped me learn to
work very closely with biologists, in particular Dr. Jen Wisecaver and Andy Gloss.

The students of the Department of Computer Science also deserve a large thank
you. They have all provided feedback on talks and been open to discuss ongoing
problems with projects even if it was not their specific subfield.

Finally, I would like to thank all of my friends and family, who continuously
provided support over the years. Most importantly they helped keep me grounded
and remind me that there is a world outside the walls of Gould-Simpson.

I have received significant financial support throughout my dissertation. My
initial funding came from the University of Arizona’s National Science Foundation
Integrative Graduate Research and Education Traineeship (IGERT) in Genomics,
grant number DGE-0654435. Later funding came from NSF grant IIS-1217886 and
fellowship funding from the University of Arizona Department of Computer Science.
I have received several travel grants from the University of Arizona Graduate and
Professional Student Council, the International Society for Computational Biology,
the National Science Foundation, and Association for Computing Machinery.

I would also like to acknowledge the University of Arizona Research Computing,
without an allocation of resources from High Performance Computing (HPC) and
High Throughput Computing (HTC) my research would have been more difficult.

5

TABLE OF CONTENTS

LIST OF FIGURES . 9

LIST OF TABLES . 11

ABSTRACT . 12

CHAPTER 1 Introduction and Background 14
1.1 Introduction . 14
1.2 Parameter advising . 17
1.3 Survey of related work . 22

1.3.1 Accuracy estimation . 23
1.3.2 A priori advising . 27
1.3.3 Meta-alignment . 28
1.3.4 Column confidence scoring . 29

1.4 Review of protein secondary structure 30
1.5 Plan of the dissertation . 31

CHAPTER 2 Accuracy Estimation . 33
2.1 Introduction . 33
2.2 The estimator . 34
2.3 Learning the estimator from examples 36

2.3.1 Fitting to accuracy values . 36
2.3.2 Fitting to accuracy differences 38

CHAPTER 3 The Facet Estimator . 44
3.1 Introduction . 44
3.2 Estimator features . 45

3.2.1 Secondary Structure Blockiness 46
3.2.2 Secondary Structure Agreement 51
3.2.3 Gap Coil Density . 52
3.2.4 Gap Extension Density . 52
3.2.5 Gap Open Density . 53
3.2.6 Gap Compatibility . 53
3.2.7 Substitution Compatibility . 54
3.2.8 Amino Acid Identity . 55
3.2.9 Secondary Structure Identity 55

TABLE OF CONTENTS – Continued

6

3.2.10 Average Substitution Score . 56
3.2.11 Core Column Density . 56
3.2.12 Information Content . 57
3.2.13 Results . 57

3.3 Software . 58

CHAPTER 4 The Optimal Advisor Problem 62
4.1 Introduction . 62
4.2 Learning an optimal advisor . 63

4.2.1 Optimal Advisor . 66
4.2.2 Advisor Set . 67
4.2.3 Advisor Estimator . 68

4.3 Complexity of learning optimal advisors 69

CHAPTER 5 Constructing Advisor . 74
5.1 Introduction . 74
5.2 Constructing optimal advisors by integer linear programming 75

5.2.1 Modeling the Advisor Set Problem 76
5.2.2 Finding optimal Oracle Sets 79
5.2.3 Modeling the Advisor Estimator Problem 80
5.2.4 Modeling the Optimal Advisor Problem 81

5.3 Approximation algorithm for learning advisor sets 81

CHAPTER 6 Parameter Advising for Opal 88
6.1 Introduction . 88
6.2 Experimental methods . 90
6.3 Comparison of advisor estimators . 94

6.3.1 Finding an estimator . 94
6.3.2 Comparing estimators to true accuracy 95

6.4 Comparison of advisor sets . 96
6.4.1 Shared structure across advisor sets 98

6.5 Application to parameter advising . 100
6.5.1 Learning advisor sets by different approaches 100
6.5.2 Varying the exact set for the greedy algorithm 105
6.5.3 Varying the error tolerance for the greedy algorithm 105
6.5.4 Learning advisor sets for different estimators 108

6.6 Software . 110
6.6.1 Opal version 3 . 110

TABLE OF CONTENTS – Continued

7

CHAPTER 7 Aligner Advising for Ensemble Alignment 113
7.1 Introduction . 114

7.1.1 Related work . 116
7.2 Constructing the universe for aligner advising 117

7.2.1 Determining the universe of aligners 118
7.2.2 Determining the universe of parameter settings 118

7.3 Evaluating ensemble alignment . 121
7.3.1 Parameter advising . 122
7.3.2 Aligner advising . 123
7.3.3 Comparing ensemble alignment to meta-alignment 125
7.3.4 Advising accuracy within difficulty bins 127
7.3.5 Generalization of aligner advising 127
7.3.6 Theoretical limit on advising accuracy 128
7.3.7 Composition of advisor sets 128
7.3.8 Running time for advising . 129

7.4 Software . 130

CHAPTER 8 Adaptive Local Realignment 132
8.1 Introduction . 132
8.2 Adaptive local realignment . 135

8.2.1 Identifying local realignment regions 136
8.2.2 Local parameter advising on a region 138
8.2.3 Iterative local realignment . 139
8.2.4 Combining local with global advising 139

8.3 Assessing local realignment . 140
8.3.1 Effect of local realignment across difficulty bins 142
8.3.2 Varying advising set cardinality 143
8.3.3 Comparing estimators for local advising 145
8.3.4 Effect of iterating local realignment 147
8.3.5 Summarizing the effect of adaptive local realignment 147
8.3.6 Running time . 148
8.3.7 Local and global advising in Opal 148

CHAPTER 9 Predicting Core Columns . 150
9.1 Introduction . 150

9.1.1 Related work . 152
9.2 Learning a coreness estimator . 153

9.2.1 Representing alignment columns 153
9.2.2 Classes of column windows . 154

TABLE OF CONTENTS – Continued

8

9.2.3 The coreness regression function 155
9.2.4 Learning the distance function by linear programming 158

9.3 Using coreness to improve accuracy estimation 164
9.3.1 Creating a new coreness feature 165
9.3.2 Augmenting former features by coreness 167

9.4 Assessing the coreness prediction . 168
9.4.1 Constructing the coreness regressor 169
9.4.2 Improving parameter advising 171

CHAPTER 10 Conclusions . 178
10.1 Further research . 180

REFERENCES . 185

9

LIST OF FIGURES

1.1 Effect of aligner parameter choice on alignment accuracy 17
1.2 Calculating alignment accuracy . 18
1.3 Overview of the parameter advising process 19

3.1 Correlation of features with true accuracy 59
3.2 Using the Facet tool API . 60
3.3 Using the Facet tool on the command line 60
3.4 The Facet website . 61

6.1 Correlation of estimators with accuracy 97
6.2 Advising accuracy of Facet in benchmark bins for small cardinalities 101
6.3 Advising accuracy of Facet in benchmark bins for large cardinality . 102
6.4 Advising using exact, greedy, and oracle sets with Facet 103
6.5 Greedily augmenting exact advisor sets 103
6.6 Effect of error tolerance on advising accuracy using greedy sets 104
6.7 Comparing testing and training accuracies of various estimators . . . 106
6.8 Comparing estimators on benchmarks with at least four sequences . . 107
6.9 Comparing all estimators on greedy advisor sets 108

7.1 Overview of the ensemble alignment process 114
7.2 Effect of aligner choice on alignment accuracy 115
7.3 Accuracy of parameter advising using Facet 121
7.4 Aligner advising and parameter advising using Facet 123
7.5 Aligner advising and parameter advising using TCS 124
7.6 Comparison of ensemble and meta-alignment 125
7.7 Accuracy of default aligner advising across difficulty bins 126
7.8 General and default aligner advising 127
7.9 Aligner advising accuracy using a perfect estimator 129

8.1 Impact of adaptive local realignment on alignment accuracy 133
8.2 Overview of the local advising process 137
8.3 Effect of local advising across difficulty bins 144
8.4 Effect of local advising across set cardinalities 146
8.5 Effect of various estimators used for local advising 146

9.1 Fit of coreness regressor to average true coreness 172
9.2 Correlation of estimated and true count of core columns 172

LIST OF FIGURES – Continued

10

9.3 Advising using oracle sets with modified estimators 176
9.4 Advising using greedy sets with modified estimators 176
9.5 Advising using Facet with predicted coreness 177

11

LIST OF TABLES

6.1 Greedy Advisor Sets for Opal Using Facet 98
6.2 Composition of Advisor Sets at Different Cardinalities k 99
6.3 Number of Folds Where Greedy and Exact Sets Share Parameters . . 99

7.1 Universe of Parameter Settings for General Aligner Advising 120
7.2 Greedy Default and General Advising Sets 130

12

ABSTRACT

The problem of aligning multiple protein sequences is essential to many biological

analyses, but most standard formulations of the problem are NP-complete. Due

to both the difficulty of the problem and its practical importance, there are many

heuristic multiple sequence aligners that a researcher has at their disposal. A basic

issue that frequently arises is that each of these alignment tools has a multitude of

parameters that must be set, and which greatly affect the quality of the alignment

produced. Most users rely on the default parameter setting that comes with the

aligner, which is optimal on average, but can produce a low-quality alignment for

the given inputs.

This dissertation develops an approach called parameter advising to find a pa-

rameter setting that produces a high-quality alignment for each given input. A

parameter advisor aligns the input sequences for each choice in a collection of pa-

rameter settings, and then selects the best alignment from the resulting alignments

produced. A parameter advisor has two major components: (i) an advisor set of

parameter choices that are given to the aligner, and (ii) an accuracy estimator that

is used to rank alignments produced by the aligner.

Alignment accuracy is measured with respect to a known reference alignment,

in practice a reference alignment is not available, and we can only estimate accu-

racy. We develop a new accuracy estimator that we call called Facet (short for

“feature-based accuracy estimator”) that computes an accuracy estimate as a lin-

ear combination of efficiently-computable feature functions, whose coefficients are

learned by solving a large scale linear programming problem. We also develop an

efficient approximation algorithm for finding an advisor set of a given cardinality for

a fixed estimator, whose cardinality should ideally small, as the aligner is invoked

for each parameter choice in the set.

13

Using Facet for parameter advising boosts advising accuracy by almost 20%

beyond using a single default parameter choice for the hardest-to-align benchmarks.

This dissertation further applies parameter advising in two ways: (i) to ensemble

alignment, which uses the advising process on a collection of aligners to choose both

the aligner and its parameter settings, and (ii) to adaptive local realignment, which

can align different regions of the input sequences with distinct parameter choices to

conform to mutation rates as they vary across the lengths of the sequences.

14

CHAPTER 1

Introduction and Background

Overview

While multiple sequence alignment is an essential step in many biological analyses,

all of the standard formulation of the problem are NP-Complete. As a consequence,

many heuristic aligners are used in practice to construct multiple sequence align-

ments. Each of these aligners contains a large number of tunable parameters that

greatly affect the accuracy of the alignment produced. In this chapter, we introduce

the concept of a parameter advisor, which selects a setting of parameter values for

a particular set of input sequences.

1.1 Introduction

The problem of aligning a set of protein sequences is a critical step for many biolog-

ical analyses, including creating phylogenetic trees, predicting secondary structure,

homology modeling of tertiary structure, and many others. One issue is that while

we can find optimal alignments of two sequences in polynomial time (Needleman and

Wunsch, 1970), all of the standard formulations of the multiple sequence alignment

problem are NP-complete (Wang and Jiang, 1994; Kececioglu and Starrett, 2004).

Due to the importance of multiple sequence alignment and its complexity, it is

an active field of research.

A multiple sequence alignment of set of sequences {S1, S2..., Sk} is a k by `

matrix of characters, where row i in the matrix contains the characters of sequence

Si, in order, possibly with gap characters inserted. The length of the alignment `

is at least the length of the longest sequence, so ` ≥ max1≤i≤k{|Si|}. Characters

from two sequences are said to be aligned when they appear in the same column

15

of the alignment. When the two aligned characters are the same, the pair is called

an identity otherwise it is a mismatch. In general, identities and mismatches are

both called substitutions. The unweighted edit distance between two sequences

is defined as the minimum number single-character edits to transform one sequence

into the other. The edit value of an alignment is its total number of inserted gap

characters and mismatches. For two sequences, you can find the optimal alignment

of minimum value using dynamic programming (Needleman and Wunsch, 1970).

Finding an optimal alignment of more than two sequences is NP-Complete (Wang

and Jiang, 1994). For multiple sequence, alignment many heuristic approaches have

been developed that typically use one of two common objectives. The sum-of-

pairs score (SPS) of a multiple sequence alignment is the sum of the values of

induced pairwise alignments Alternately, the tree-alignment objective, is the sum

of pairwise alignment values align all of the branches of an input phylogenetic tree,

minimized over all possible choices of ancestral sequence.

The number of alignment tools tools, or aligners, available for finding mul-

tiple sequence alignments continues to grow because of the need for high quality

alignments. Many methods have been published that produce multiple sequence

alignments using various heuristic strategies to deal with the problem’s complexity.

The most popular general method is progressive alignment which aligns sequences

using a guide tree (a binary tree where the leaves are the input sequences, Feng

and Doolittle, 1987). Starting with two neighboring leaves a progressive aligner will

optimally align these two sequences and replace the subtree that contained only

these sequences by the alignment of the two sequences. The progressive alignment

method then repeats the process proceeds in a bottom up manner aligning two of

the remaining leaves (but some leaves may now contain sub-alignments). In this

way a progressive aligner is only ever aligning two sequences, or alignments, to each

other. This strategy has been used successfully for general alignment methods such

as Clustal (Thompson et al., 1994), MAFFT (Katoh et al., 2002), Muscle (Edgar,

2004a,b), Kalign (Lassmann and Sonnhammer, 2005a), and Opal (Wheeler and

Kececioglu, 2007). Additionally, progressive alignment strategies have also been

16

successfully applied to specialized alignment tools such as those for whole genome

alignment like mauve (Darling et al., 2004) those for RNA specific alignment like

PMFastR (DeBlasio et al., 2009, 2012a) and mLocARNA (Will et al., 2007). Other align-

ers use consistency information from a library of two-sequence alignments, such as

T-Coffee (Notredame et al., 2000), or collect sequence information into an HMM,

as in PROMALS (Pei and Grishin, 2007). For most of the studies presented in this

dissertation, we focus on the Opal aligner, but will later consider other aligners.

For the user, choosing an aligner is only a first step in producing a multiple

sequence alignment for analysis. Each tool has a set of parameters whose values

can greatly impact the quality of the computed alignment. The alignment pa-

rameters for protein sequences typically consist of the gap-open and gap-extension

penalties, as well as the choice of substitution penalties for each pair of the 20 amino

acids, but the available tunable parameters can differ greatly between aligners. A

parameter choice for an aligner is an assignment of values to all of the alignment

parameters. Work has been done (Kim and Kececioglu, 2008) to efficiently find the

optimal parameter choices for an aligner that yields the highest accuracy alignments

on average across a set of training benchmarks. This particular parameter choice

would be the optimal default parameter choice. While such a default param-

eter works well in general, it can produce very low accuracy alignments for some

benchmarks. Figure 1.1 shows the effect of aligning the same set of five sequences

under two different alignment parameter choices, one of which is the optimal default

choice.

Setting the 214 parameters for the standard protein alignment model is made

easier by the fact that amino acid substitution scores are well studied. Generally

one of three substitution matrix families is used for alignment: PAM (Dayhoff

et al., 1978), BLOSUM (Henikoff and Henikoff, 1992), and VTML (Müller et al., 2002),

but others also exist (Kuznetsov, 2011). Recent work has shown that the highest-

accuracy alignments are generally produced using BLOSUM and VTML matrices, so

these are the only ones we consider (Edgar, 2009).

We attempt to select a parameter choice that is best for a given input set of

17

(a) Higher Accuracy Alignment

(b) Lower Accuracy Alignment

Figure 1.1: (a) Part of an alignment of benchmark sup 155 from the
SABRE (Van Walle et al., 2005) suite computed by Opal (Wheeler and Kececioglu,
2007) using non-default parameter choice (VTML200, 45, 6, 40, 40); this alignment has
accuracy value 75.8%, and Facet (Kececioglu and DeBlasio, 2013) estimator value
0.423. (b) Alignment of the same benchmark by Opal using the optimal default pa-
rameter choice (BLSM62, 65, 9, 44, 43); this alignment has lower accuracy 57.3%, and
lower Facet value 0.402. In both alignments, the positions that correspond to core
blocks of the reference alignment, which should be aligned in a correct alignment,
are highlighted in bold.

sequences (rather than on average) using an approach we call parameter advising,

which we describe in the next section.

1.2 Parameter advising

The true accuracy of a computed alignment is measured as the fraction of sub-

stitutions that are also present in core columns of a reference alignment for

these sequences. (Reference alignments represent the “correct” alignment of the se-

quences.) These reference alignments for protein sequences are typically constructed

by aligning the three-dimensional structures of the proteins. Core columns of

this reference alignment, on which we measure accuracy, are those sections where

the aligned amino acids from all of the sequences are all mutually close in three-

dimensional space. Figure 1.2 shows an example of computing true accuracy for a

computed alignment.

What we have described and use throughout this dissertation is the sum-of-pairs

18

... aDEh ...

... dSR- ...

... aSHl ...

... aDEh- ...

... dSR-- ...

... aS-Hl ...

(i)

(ii)

(a) Reference alignment (b) Computed alignment

Figure 1.2: A section of a reference and computed alignment. Accuracy of a com-
puted alignment (b) is measured with respect to a known reference alignment (a).
We primarily use the sum-of-pairs accuracy measure which is the fraction of aligned
residues from the computed alignment recovered in the computed alignment. In the
example above the aligned residue pair (i) is correctly recovered, while (ii) is not.
This value is calculated only on core columns of an alignment (shown in red). In
the example the accuracy is 66%, because 4 of the 6 aligned residue pairs in core
columns of the reference alignment are recovered in the computed alignment.

definition of alignment accuracy. Another definition of multiple sequence alignment

accuracy is known as “total-column” accuracy. The total-column accuracy is the

fraction of core columns from the reference multiple sequence alignment that are

completely recovered in the computed alignment. For the example in Figure 1.2

the sum-of-pairs accuracy is 66%, but the total-column accuracy is only 50%. Even

though there is only one out of place amino acid in the alignment on the right

that is from a core columns this means the whole column is misaligned; therefore,

only one of the two core columns is recovered in the computed alignment. While

arguments can be made for the merits of both the total-column and sum-of-pairs

accuracy measurements, the total-column measure is more sensitive to small errors

in the alignment. This is why we use the more fine-grained sum-of-pairs measure in

this dissertation.

In the absence of a known reference alignment, we are left to estimate the ac-

curacy of a computed alignment. Estimating the accuracy of a computed multiple

sequence alignment (namely, how closely it agrees with the correct alignment of

its sequences), without actually knowing the correct alignment, is an important

problem. A good accuracy estimator has very broad utility: for example, from

19

Parameter Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

 alignment alignment

accuracy 
estimate

max
Accuracy 
Estimator

unaligned
sequences

 (γE,γI,λE,λI,σ)

parameter
choices

Aligner

aligned
sequences

{

alternate
alignments

labelled
alternate

alignments

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn
mnkWNYGVFFVYDVINIddhylvkkds

Figure 1.3: Overview of the parameter advising process. For the Opal

aligner a parameter choice consists of gap penalties γE, γI , λE, λI as well as the sub-
stitution scoring matrix σ. A candidate alignment is generated for each parameter
choice, so the advisor set should be small. An accuracy estimator labels each candi-
date alignment with an accuracy estimate. Finally, the alignment with the highest
estimated accuracy is chosen by the advisor.

building a meta-aligner that selects the most accurate alignment output by a collec-

tion of aligners, to boosting the accuracy of a single aligner by choosing values for

the parameters of its alignment scoring function to yield the best output from that

aligner.

Given an accuracy estimator E, and a set P of parameter choices, a parameter

advisor A tries each parameter choice p ∈ P , invokes an aligner to compute an

alignment Ap using parameter choice p, and then “selects” the parameter choice p∗

that has maximum estimated accuracy E(Ap∗). Figure 1.3 shows a diagram of the

parameter advising process.

An advisor has two crucial elements:

(1) the advisor estimator which estimates the accuracy of a computed

20

alignment, and which the advisor will use to choose between alternate

alignments, and

(2) the advisor set, which is the set of parameter choices that is tried by

to the aligner to produce the alternate alignments that the advisor will

choose among.

We say that an advisor’s accuracy on a set of input sequences is the true accuracy

of the alignment obtained using the parameter choice selected from the advisor set

with highest estimated accuracy.

We develop a new advisor estimator we call Facet (feature-based accuracy

estimator) in Chapters 2 and 3. Our accuracy estimator is a linear combination of

efficiently-computable feature functions. We describe the framework for the estima-

tor and the methods for finding its coefficients in Chapter 2. We find the estimator

coefficients using mathematical optimization, linear programming (LP), to identify

coefficients that when used in the estimator can distinguish high accuracy alignments

from low. The feature functions are measures of some aspect of an alignment

that is easily computable and has a bounded value. iThe description of how to

use linear programming to find an estimator as well the description of the feature

functions used in Facet are described in Chapter 3.

To create a parameter advisor we also need to be able to find advisor sets

that are of small cardinality (since the advisor will invoke the aligner for each of

the parameter choices in the set) and give the best advising accuracy. An advisor

set is a subset of the parameter universe, which is the enumeration of all possible

combinations of settings for all of the parameters. We find advisor sets both for

the oracle estimator (one that always returns the true accuracy of an alignment)

and for a fixed estimator in Chapter 5. While finding optimal advisor sets is NP-

complete, we can find optimal sets of constant cardinality in polynomial time using

exhaustive search. To find advising sets of any cardinality we give a polynomial-

time `
k
-approximation algorithm for finding an advisor set of cardinality k when

provided an initial optimal solution of constant size ` < k.

21

The problem of finding an optimal advisor is to simultaneously find the ad-

visor set and advisor estimator that together yield a parameter advisor with the

highest possible advising accuracy. This problem can be formulated as an integer

linear program (ILP), which can be restricted to find optimal advisor sets for a

fixed estimator, or an optimal advisor estimator for a fixed set. Solving the ILP

is intractable in practice, even for very small training sets and using the restric-

tions described. Finding the optimal advisor is NP-complete (see Chapter 4), as

are the problems of finding an optimal advisor, and an optimal estimator (the two

restrictions to the ILP).

To learn an advisor, we collect a training set of example alignments whose true

accuracy is known, and find estimator coefficients, and advising sets for the estima-

tor, that give the best advising accuracy. We form the training set by:

(1) collecting reference alignments from standard suites of benchmark protein

multiple alignments;

(2) for each such reference alignment, calling a multiple sequence aligner

on the reference alignment’s sequences with all parameter choices in the

universe, producing a collection of alternate alignments; and

(3) labeling each such alternate alignment by its true accuracy with respect

to the reference alignment for its sequences.

We use suites of benchmarks for which the reference alignments are obtained by

structural alignment of the proteins using their known three-dimensional structures.

The alternate alignments together with their labeled accuracies form the examples

in our training set. Chapter 6 describes these examples in detail and experimentally

demonstrates the increase in accuracy resulting from using our new advisor.

Chapters 7 and 8 show results on using the advising process for ensemble align-

ment (choosing both an aligner and its parameters in Chapter 7), and adaptive local

realignment (realigning regions under different parameter choices in Chapter 8).

Since true accuracy is only measured on the core columns of an alignment identi-

fying these columns could boost the accuracy of our estimator and hence our advisor.

22

Chapter 9 describes a method to predict how much of a column in a computed align-

ment is from core columns of an unknown reference alignment, using a variant of

nearest neighbor classification.

Finally, Chapter 10 provides a summary of our work and future directions for

research.

1.3 Survey of related work

Parameter advising as described earlier can be called a posteriori advising : that

is, advising on a parameter choice after seeing the resulting computed alignments.

To our knowledge this is the first successful method for selecting alignment parameter

values for a given input by choosing among computed alignments.

Work related to parameter advising can be divided into four major cate-

gories:

(i) accuracy estimation, which attempts to provide a score for an align-

ment, similar to the score produced by Facet,

(ii) a priori advising which attempts to predict good parameter values

for aligner from unaligned sequences as apposed to examining alignment

accuracy after an alignment is generated,

(iii) meta-alignment, which takes the output of multiple alignment meth-

ods that are known to work well, and combines together segments of

those alignments, and

(iv) column confidence scoring, which gives a confidence score to each

column in an alignment rather than the alignment as a whole, and can

be used to exclude low-confidence regions of the alignment from further

analysis.

Work from each of these categories is described below.

23

1.3.1 Accuracy estimation

Several approaches have been developed for assessing the quality of a computed

alignment without knowing a reference alignment for its sequences. These ap-

proaches follow two general strategies for estimating the accuracy with which a

computed alignment recovers the unknown correct alignment.1

The first general strategy, which we call scoring-function-based, is to de-

velop a new scoring function on alignments that ideally is correlated with accuracy

(see Notredame et al., 1998; Thompson et al., 2001; Pei and Grishin, 2001; Ahola

et al., 2006, 2008). These scoring functions combine local attributes of an alignment

into a score, and typically include a measure of the conservation of amino acids in

alignment columns (Pei and Grishin, 2001; Ahola et al., 2006).

The second general strategy, which we call support-based, is to:

(a) examine a collection of alternate alignments of the same sequences, where

the collection can be generated by changing the method used for com-

puting the alignment, or by changing the input to a method; and then

(b) measure the support for the original computed alignment among the

collection of alternate alignments

(See Lassmann and Sonnhammer, 2005b; Landan and Graur, 2007; Penn et al., 2010;

Kim and Ma, 2011.) In this strategy, the support for the computed alignment, which

essentially measures the stability of the alignment to changes in the method or input,

serves as a proxy for accuracy.

Scoring-function-based approaches

Approaches that assess alignment quality via a scoring function include

COFFEE (Notredame et al., 1998), AL2CO (Pei and Grishin, 2001), NorMD (Thomp-

son et al., 2001), PredSP (Ahola et al., 2008), and StatSigMa (Prakash and

1Here correctness can be either in terms of the unknown structural alignment (as in our

present work on protein sequence alignment), or the unknown evolutionary alignment (as in

simulation studies).

24

Tompa, 2009). Several recently developed methods also consider protein tertiary

(3-dimensional) structure; due to the limitations this imposes on our benchmark

set we do not compare our method with these but they include iRMSD (Armougom

et al., 2006), STRIKE (Kemena et al., 2011), and an LS-SVM approach (Ortuño et al.,

2013). We briefly describe each in turn.

COFFEE (Notredame et al., 1998) evaluates a multiple alignment by realigning its

sequences pairwise; using the matches in all these pairwise alignments to determine

transformed substitution scores for pairs of residues2 in the columns of the multiple

alignment, where these position-dependent transformed scores are in the range [0, 1];

accumulating the weighted sum of scores of all induced pairwise alignments in the

multiple alignment without penalizing gaps, where substitutions are evaluated using

the above transformed scores; and finally normalizing by the weighted sum of the

lengths of all induced pairwise alignments. COFFEE is a component of the T-Coffee

alignment package (Notredame et al., 2000). Updated versions of the COFFEE es-

timator have been published under a new name TCS (Chang et al., 2014) that use

an updated library of pairwise alignments but follow the same basic principals to

construct an estimation of alignment accuracy.

AL2CO (Pei and Grishin, 2001) uses conservation measures on alignment columns

that are based on weighted frequencies of the amino acids in the column, and assesses

an alignment by averaging this measure over all its columns.

NorMD (Thompson et al., 2001) develops an elaborate alignment scoring function

that transforms standard amino acid substitution scores on pairs of aligned residues

into a geometric substitution score defined on a 20-dimensional Euclidean space;

takes a weighted average of all these substitution scores in a column; transforms

this average substitution score through exponential decay; sums these transformed

scores across columns; then includes affine gap penalties (Gotoh, 1982), and Wilbur-

Lipman hash scores (Wilbur and Lipman, 1983) for normalization. NorMD is used in

several systems, including RASCAL (Thompson et al., 2003), LEON (Thompson et al.,

2004), and AQUA (Muller et al., 2010).

2A residue is a position in a protein sequence together with the amino acid at that position.

25

PredSP (Ahola et al., 2008) fits a beta distribution from statistics to the true

accuracies associated with a sample of alignments, where the mean and variance of

the distribution are transforms of a linear combination of four alignment features.

The features they use are sequence percent identity, number of sequences, alignment

length, and a conservation measure that is the fraction of residues in conserved

columns as identified by a statistical model that takes into account amino acid

background probabilities and substitution probabilities (Ahola et al., 2006). The

accuracy that is predicted for the alignment is essentially the mean of the fitted

beta distribution; a predicted confidence interval on the accuracy can also be quoted

from the fitted distribution.

StatSigMa (Prakash and Tompa, 2009) scores an input alignment based on a

phylogenetic tree, where the tree can be given by the user or based on an alignment

of a second set of sequences with the same labels. A scoring function is generated

based on how well the alignment fits the tree. They then test the probability of

each branch in the tree given the test alignment using Karlin-Altschul (Karlin and

Altschul, 1990) alignment statistics (the same statistics used for BLAST (Altschul

et al., 1990) homology search). The p-value assigned to the alignment is then the

maximum p-value over all branches of the tree.

iRMSD (Armougom et al., 2006) uses known tertiary structure that has been

assigned to all sequences in the alignment. For each pair of sequences, and for each

pair of columns, they compare the distance of the pair of columns in each protein.

This difference in tertiary distances is summed and weighted to generate a score for

an alignment.

STRIKE (Kemena et al., 2011) scoring uses a generated amino acid replacement

matrix that scores based on how often two amino acids are in contact in the tertiary

structure. The scoring algorithm infers the tertiary structure of a multiple sequence

alignment from the known structure of a single protein in that alignment. They

then examine the pairs of columns that are in contact (close in 3-D space) in the

tertiary structure, and sum the STRIKE matrix score for each sequence’s amino acid

pairs at the columns in the alignment.

26

The LS-SVM approach (Ortuño et al., 2013) uses a similar feature-based estimator

strategy to Facet. They have developed 14 feature functions for an alignment, these

function each output a single numerical value and are combined to get a final accu-

racy estimation for an alignment. The functions used in the LS-SVM approach rely on

tertiary structure, and additional information about the protein sequences obtained

by querying PBD (Berman et al., 2000), PFam (Finn et al., 2009), Uniprot (Apweiler

et al., 2004) and the Gene Ontology (GO, Camon et al., 2004) databases – which

means these databases must be available at all times. As this method makes use

of tertiary structure annotations of the proteins, it severely reduces the universe of

analyzable sequences. The calculated features are fed into a least-squares support

vector machine (LS-SVM) that has been trained to predict accuracy.

Support-based approaches

Approaches that assess alignment quality in terms of support from alternate align-

ments include MOS (Lassmann and Sonnhammer, 2005b); HoT (Landan and Graur,

2007); GUIDANCE (Penn et al., 2010); and PSAR (Kim and Ma, 2011). We briefly

summarize each below.

MOS (Lassmann and Sonnhammer, 2005b) takes a computed alignment together

with a collection of alternate alignments of the same sequences, and over all residue

pairs aligned by the computed alignment, measures the average fraction of alternate

alignments that also align the residue pair. In other words, MOS measures the average

support for the substitutions in the computed alignment by other alignments in the

collection.

HoT (Landan and Graur, 2007) considers a single alternate alignment, obtained

by running the aligner that generated the computed alignment on the reverse of the

sequences and reversing the resulting alignment, and reports the MOS value of the

original alignment with respect to this alternate alignment.

GUIDANCE (Penn et al., 2010) assumes the computed alignment was generated by

a so-called progressive aligner that uses a guide tree, and obtains alternate align-

ments by perturbing the guide tree and reinvoking the aligner. GUIDANCE reports

27

the MOS value of the original alignment with respect to these alternate alignments.

PSAR (Kim and Ma, 2011) generates alternate alignments by probabilistically

sampling pairwise alignments of each input sequence versus the pair-HMM obtained

by collapsing the original alignment without the input sequence. PSAR reports the

MOS value of the original alignment with respect to these alternates.

Note that in contrast to other approaches, HoT and GUIDANCE require access to

the aligner that computed the alignment. They essentially measure the stability of

the aligner to sequence reversal or guide tree alteration.

Note also that scoring-function-based approaches can estimate the accuracy of a

single alignment, while support-based approaches inherently require a set of align-

ments.

1.3.2 A priori advising

As apposed to examining alignment accuracy after an alignment is generated, a

priori advising attempts to make a prediction about an aligner’s output from

just the unaligned sequences. Such methods include AlexSys (Aniba et al., 2010),

PAcAlCI (Ortuno et al., 2012), GLProbs (Ye et al., 2015), and FSM (Kuznetsov, 2011).

AlexSys (Aniba et al., 2010) uses a decision tree to classify the input sequences

and identify which aligner should be used. At each step it tests the sequence’s pair-

wise identity, sequence length differences, hydrophobicity characteristics, or PFam in-

formation to find relationships between sequences in the input.

PAcAlCI (Ortuno et al., 2012) uses similar methods to Facet and the LS-SVM

approach described earlier, removing the features that rely on the alignment itself.

Again features are combined using an LS-SVM. By querying multiple databases and

finding similarity in tertiary structure, PAcAlCI predicts the alignment accuracy of

several major alignment tools (under default parameters).

GLProbs (Ye et al., 2015) uses average pairwise percent-identity to determine

which Hidden Markov Model (HMM) to use for alignment. While the actual dif-

ficulty assessment is simple, it then allows the HMM parameters to be specific to

28

similarity of the particular sequences being aligned.

FSM (Kuznetsov, 2011) uses BLAST to find which family of SABmark benchmark

sequences is most similar to the input sequences. It then recommends a substitution

matrix that is specially tailored to these families. While BLAST is relatively fast, the

applicability of this method is restricted to a narrow range of input sequences.

1.3.3 Meta-alignment

Meta-alignment uses alignments output from several aligners to construct a new

alignment. Here the final alignment has aspects of the input alignments, but in con-

trast to other advising methods, it is not necessarily the output of any single aligner.

Such methods include ComAlign (Bucka-Lassen et al., 1999), M-Coffee (Wallace

et al., 2006), Crumble and Prune(Roskin et al., 2011), MergeAlign (Collingridge

and Kelly, 2012), and AQUA (Muller et al., 2010).

ComAlign (Bucka-Lassen et al., 1999) identifies paths through the standard m-

dimensional dynamic programming table (which in principle would yield the optimal

multiple sequence alignment of the m input sequences) that corresponds to each

of the candidate input multiple sequence alignments. They then find points where

these paths intersect, and construct a consensus alignment by combining the highest-

scoring regions of these paths.

M-Coffee (Wallace et al., 2006) uses several alignment programs to generate

pairwise alignment libraries. They then use this library (rather than simply the

optimal pairwise alignments) to run their T-Coffee algorithm. T-Coffee produces

multiple alignments by aligning pairs of alignments to maximize the support from

the library of all matching pairs of characters in each column. In this way they

attempt to find the alignment with the most support from the other aligners.

Crumble and Prune (Roskin et al., 2011) computes large-scale alignments by

splitting the input sequences both vertically (by aligning subsets of sequences) and

horizontally (by aligning substrings). The Crumble procedure finds similar sub-

strings and uses any available alignment method to align these regions; then for the

overlapping regions between these blocks, it realigns these intersections to generate

29

a full alignment. The Prune procedure splits an input phylogenetic tree into sub-

problems with a smalls number of sequences; these subproblems are then replaced

by their consensus sequence when parent problems are aligned, allowing large num-

bers of sequences to be aligned. This method aims to reduce the computational

resources needed to align large inputs, as opposed to increasing multiple sequence

alignment accuracy.

MergeAlign (Collingridge and Kelly, 2012) generates a weighted directed acyclic

graph (DAG), where each vertex represents a column in one of the input alignments,

and an edge represents a transition from one column to its neighbor (the column

directly to the right) in the same alignment. The weight of each edge is the number

of alignments that have that transition. The consensus alignment is constructed as

the maximum-weight single-source/single-sink path in the DAG.

AQUA (Muller et al., 2010) chooses between an alignment computed by

Muscle (Edgar, 2004b) or MAFFT (Katoh et al., 2005), based on their NorMD (Thomp-

son et al., 2001) score. Chapter 6 shows that for the task of choosing the more

accurate alignment, the NorMD score used by AQUA is much weaker than the Facet

estimator used here. AQUA can also be used as a meta-aligner because it chooses

between the outputs of multiple aligners, rather than two parameter choices for

a singe aligner. Chapter 7 gives results on using Facet in the context of meta-

alignment.

1.3.4 Column confidence scoring

In addition to scoring whole alignments, work has been done to identify poorly-

aligned regions of alignments. This can help biologists to find unreliable homology in

an alignment to ignore for further analysis, as in programs like GBLOCKS (Castresana,

2000) and ALISCORE (Misof and Misof, 2009). Many of the accuracy estimators

discussed earlier also provide column level scoring, such as TCS.

GBLOCKS (Castresana, 2000) identifies columns that are conserved and sur-

rounded by other conserved regions, using only column percent-identity. Columns

that contain gaps are eliminated, as well as runs of conservation that do not meet

30

length cutoffs.

ALISCORE (Misof and Misof, 2009) uses a sliding window across all pairwise

alignments, and determines if the window is statistically different from two random

sequences. This score is evaluated on a column by counting the number of windows

containing it that are significantly non-random.

Recently, Ren (2014) developed a new method to classify columns with an SVM.

This method uses 5 features of an alignment that are passed into the SVM to classify

whether or not the column should be used for further analysis. Their study focuses

mainly on using alignments for phylogenetic reconstruction.

1.4 Review of protein secondary structure

Multiple sequence alignment benchmarks of protein sequences are normally con-

structed by aligning the three-dimensional structure (sometimes referred to as ter-

tiary structure) of the folded proteins. Amino acids that are close in 3-D space are

considered aligned, and those that are simultaneously very close in all sequences are

labeled as core columns of the alignment. The amino acid sequence of a protein

is referred to as the primary structure. The secondary structure of a protein is an

intermediate between primary and tertiary structure. Secondary structure labels

each amino acid as being in one of three structure classes: α-helix, β-sheet, or

coil (other, or no structure). These structural classes tend to be conserved when

the function of related proteins is conserved.

This dissertation is focused on protein multiple sequence alignment, and we

exploit the fact that proteins fold into structures to perform functions within the

cell when computing alignments of proteins sequences.

The tertiary structure of the proteins in a set of input sequences is not normally

known, as it usually requires examining the crystalline structure of the protein,

which is slow and costly. Instead we use secondary structure in our accuracy esti-

mator, and to predict the secondary structure, we use PSIPRED (Jones, 1999).The

output of PSIPRED is not only a label from the 3 secondary structure classes for each

31

amino acid in the sequence, but also a confidence that the position in each sequence

is in each structure state. We normalize the confidences so that for any amino acid

the sum of the confidences for all three structure types sums to 1.

PSIPRED can make predictions using either the amino acid sequence alone, or

by searching through a database of protein domains to find similar sequences using

BLAST (Altschul et al., 1990). The accuracy of PSIPRED is increased substantially

when using a BLAST search, so all of our results shown later are with the version of

PSIPRED that searches through the UniRef90 (Suzek et al., 2007) database of protein

domains (which is a non-redundant set of domains from the UniProt database (see

The UniProt Consortium, 2007)) filtered using the pfilt program provided with

PSIPRED.

1.5 Plan of the dissertation

Chapter 2 next describes our approach to estimating alignment accuracy as a linear

combination of feature functions. It also describes how to find the coefficients for

such an estimator.

Chapter 3 describes our estimator Facet (short for “feature-based accuracy

estimator”). In particular, the chapter describes the efficiently computable feature

functions we used in Facet.

Chapter 4 defines the problem of finding an optimal advisor (finding both the

advisor set and the advisor estimator coefficients simultaneously). We also consider

restrictions to finding just an optimal advisor set, or optimal advisor coefficients.

We show that all of these problems are NP-complete.

Chapter 5 details the method we use to find advisor sets for a fixed estimator.

While finding an optimal advisor set is NP-Complete, we have present an efficient

approximation algorithm for finding near-optimal sets that perform well in practice.

The chapter also describes an integer linear program for find an optimal advisor

(which cannot at present be solved in practice).

Chapter 6 provides experimental results for parameter advising, and discusses

32

the approach we use to assess the effectiveness of advising.

Chapter 7 expands the universe of parameter choices in advising to include not

only the settings of the alignment parameters, but also the choice of the aligner

itself which we call aligner advising. This yields the first true ensemble aligner.

We also compare the accuracy of the alignments produced by the ensemble aligner

to those obtained using a parameter advisor with a fixed aligner.

Chapter 8 presents an approach called adaptive local realignment that com-

putes alignments that can use different parameter choices in different regions of the

alignment. Since regions of a protein have distinct mutation rates, using different

parameter choices across an alignment can be necessary.

Chapter 9 describes an approach to predicting how much of a column in a com-

puted alignment comes from core columns of an unknown reference alignment using

a variant of nearest-neighbor classification. Since true accuracy is only measured on

core columns, inferring such columns can boost the accuracy of our advisor.

Finally, Chapter 10 summarizes our results and gives future directions for re-

search.

33

CHAPTER 2

Accuracy Estimation

Overview

The accuracy of a multiple sequence alignment is commonly measured as the fraction

of aligned residues from the core columns of a known reference alignment that are

also aligned in the computed alignment. Usually this reference alignment is unavail-

able, in which case we can only estimate the accuracy. We present a reference-free

approach that estimates accuracy that is a linear combination of bounded feature

functions of an alignment. In this chapter, we describe this framework for accuracy

estimation and show that all higher-order polynomial estimators can be reduced to

a linear estimator. We also give several approaches for learning the coefficients of

the estimator function through mathematical optimization.

This chapter was adapted from portions of previous publications (DeBlasio et al.,

2012b; Kececioglu and DeBlasio, 2013).

2.1 Introduction

Without knowing a reference alignment that establishes the ground truth against

which the true accuracy of an alignment is measured, we are left with only being able

to estimate the accuracy of an alignment. Our approach to obtaining an estimator

for alignment accuracy is to (a) identify multiple features of an alignment that tend

to be correlated with accuracy, and (b) combine these features into a single accuracy

estimate. Each feature, as well as the final accuracy estimator, is a real-valued

function of an alignment.

The simplest estimator is a linear combination of feature functions, where fea-

tures are weighted by coefficients. These coefficients can be learned by training the

34

estimator on example alignments whose true accuracy is known. This training pro-

cess will result in a fixed coefficient or weight for each feature. Alignment accuracy

is usually represented by a value in the range [0, 1], with 1 corresponding to per-

fect accuracy. Consequently, the value of the estimator on an alignment should be

bounded, no matter how long the alignment or how many sequences it aligns. For

boundedness to hold when using fixed feature weights, the feature functions them-

selves must also be bounded. Hence, we assume that the feature functions also have

the range [0, 1]. (The particular features we use are presented in Chapter 3.) We can

then guarantee that the estimator has range [0, 1] by ensuring that the coefficients

found by the training process yield a convex combination of features. In practice,

we have found that not all the features naturally span the entire range [0, 1], so we

relax the convex combination condition, and instead only require that the estimator

value is in the range [0, 1] on all training examples.

2.2 The estimator

In general, we consider estimators that are polynomial functions of alignment fea-

tures. More precisely, suppose the features that we consider for alignments A are

measured by the k feature functions fi(A) for 1 ≤ i ≤ k. Then our accuracy esti-

mator E(A) is a polynomial in the k variables fi(A). For example, for a degree-2

polynomial,

E(A) := a0 +
∑
1≤i≤k

ai fi(A) +
∑

1≤i,j≤k

aij fi(A) fj(A).

For a polynomial of degree d, our accuracy estimator E(A) has the general form,

E(A) :=
∑

p1,...,pk ∈Z+

p1+···+pk ≤ d

ap1,...,pk

∏
1≤i≤k

(
fi(A)

)pi ,

where Z+ denotes the nonnegative integers, and the coefficients on the terms of

the polynomial are given by the ap1,...,pk . In this summation, there are k index

35

variables pi, and each possible assignment of nonnegative integers to the pi that

satisfies
∑

i pi ≤ d specifies one term of the summation, and hence the powers for

one term of the polynomial.

Encoding higher-order polynomial estimators

Learning an estimator from example alignments, as discussed in Section 2.3, corre-

sponds to determining the coefficients for its terms. We can efficiently learn optimal

values for the coefficients, that minimize the error between the estimate E(A) and

the actual accuracy of alignment A on a set of training examples, even for estimators

that are polynomials of arbitrary degree d. This can be done for arbitrary degree

essentially because such an estimator can always be reduced to the linear case by

a change of feature functions, as follows. For each term in the degree-d estimator,

where the term is specified by the powers pi of the fi, define a new feature function

gj(A) :=
∏

1≤i≤k

(
fi(A)

)pi ,
that has an associated coefficient cj := ap1,...,pk . Then in terms of the new feature

functions gj, the original degree-d estimator is equivalent to the linear estimator

E(A) = c0 +
∑
1≤j<t

cj gj(A),

where t is the number of terms in the original polynomial. For a degree-d estima-

tor with k original feature functions, the number of coefficients t in the linearized

estimator is at least P(d, k), the number of integer partitions of d with k parts.

This number of coefficients grows very fast with d, so overfitting can become an

issue when learning a high-degree estimator. (Even a cubic estimator on 10 features

already has 286 coefficients.) In our experiments, we focus on linear estimators.

The coefficients of the estimator polynomial are found by mathematical opti-

mization which we will describe next.

36

2.3 Learning the estimator from examples

In Section 1.2 we described the set of examples : benchmark sequences that have

been aligned under various parameter choices by the aligner, and whose alignment

are labeled with their true accuracy. In addition, we record the feature function

values for each of these examples. We then use these examples, with their associated

accuracy and feature values, to find coefficients that fit the accuracy estimator to

true accuracy by two techniques that we describe below.

2.3.1 Fitting to accuracy values

A natural criterion for fitting the estimator is to minimize the error on the example

alignments between the estimator and the true accuracy value. For alignment A in

our training set S, let Ec(A) be its estimated accuracy where vector c = (c0, . . . , ct−1)

specifies the values for the coefficients of the estimator polynomial, and let F (A) be

the true accuracy of example A.

Formally, minimizing the weighted error between estimated accuracy and true

accuracy yields estimator E∗ := Ec∗ with coefficient vector

c∗ := argmin
c∈Rt

∑
A∈S

wA
∣∣Ec(A)− F (A)

∣∣p,
where power p controls the degree to which large accuracy errors are penalized.

Weights wA correct for sampling bias among the examples, as explained below.

When p = 2, this corresponds to minimizing the L2 norm between the estima-

tor and the true accuracies. The absolute value in the objective function may be

removed, and the formulation becomes a quadratic programming problem in vari-

ables c, which can be efficiently solved. (Note that Ec is linear in c.) When p = 1,

the formulation corresponds to minimizing the L1 norm. This is less sensitive to

outliers than the L2 norm, which can be advantageous when the underlying features

are noisy. Minimizing the L1 norm can be reduced to a linear programming problem

as follows. In addition to variables c, we have a second vector of variables e with

an entry eA for each example A ∈ S to capture the absolute value in the L1 norm,

37

along with the inequalities,

eA ≥ Ec(A) − F (A),

eA ≥ F (A) − Ec(A),

which are linear in variables c and e. We then minimize the linear objective function∑
A∈S

wA eA.

For n examples, the linear program has n+ t variables and O(n) inequalities, which

is solvable even for very large numbers of examples.

If the feature functions all have range [0, 1], we can ensure that the resulting

estimator E∗ also has range [0, 1] by adding to the the linear inequalities,

ci ≥ 0,∑
0≤i<t

ci ≤ 1.

But as mentioned earlier, it may be useful to not restrict the coefficients to be a

convex combination because while the features are bounded, they may not have

values across the whole range. Instead we can also add the following inequalities for

each training example A that ensure E∗ has range [0, 1].

Ec(A) ≥ 0,

Ec(A) ≤ 1.

The weights wA on examples aid in finding an estimator that is good across

all accuracies. In the suites of protein alignment benchmarks that are commonly

available, a predominance of the benchmarks consist of sequences that are easily

alignable, meaning that standard aligners find high-accuracy alignments for these

benchmarks.1 In this situation, when training set S is generated as described earlier,

1This is mainly a consequence of the fact that proteins for which reliable structural reference

alignments are available tend to be closely related, and hence easier to align. It does not mean

that typical biological inputs are easy.

38

most examples have high accuracy, with relatively few at moderate to low accuracies.

Without weights on examples, the resulting estimator E∗ is strongly biased towards

optimizing the fit for high accuracy alignments, at the expense of a poor fit at

lower accuracies. To prevent this, we bin the examples in S by their true accuracy,

where B(A) ⊆ S is the set of alignments falling in the bin for example A, and then

weight the error term for A by wA := 1/
∣∣B(A)

∣∣. (In our experiments, we form

10 bins equally spaced at 10% increments in accuracy.) In the objective function

this weights bins uniformly (rather than weighting examples uniformly) and weights

the error equally across the full range of accuracies.

2.3.2 Fitting to accuracy differences

Many applications of an accuracy estimator E will use it to choose from a set of

alignments the one that is estimated to be most accurate. (This occurs, for instance,

in parameter advising as discussed in Chapter 6.) In such applications, the estimator

is effectively ranking alignments, and all that is needed is for the estimator to be

monotonic in true accuracy. Accordingly, rather than trying to fit the estimator

to match accuracy values, we can instead fit it so that differences in accuracy are

reflected by at least as large differences in the estimator. This fitting to differences

is less constraining than fitting to values, and hence might be better achieved.

More precisely, suppose we have selected a set P ⊆ S2 of ordered pairs of example

alignments, where every pair (A,B) ∈ P satsifies F (A) < F (B). Set P holds pairs

of examples on which accuracy F increases for which we desire similar behavior

from our estimator E. (Later we discuss how we select a small set P of important

pairs.) If estimator E increases at least as much as accuracy F on a pair in P , this

is a success, and if it increases less than F , we consider the amount it falls short an

error, which we try to minimize. Notice this tries to match large accuracy increases,

and penalizes less for not matching small increases.

We formulate fitting to differences as finding the optimal estimator E∗ := Ec∗

39

given by coefficients

c∗ := argmin
c∈Rt

∑
(A,B)∈P

wAB

(
max

{(
F (B)−F (A)

)
−
(
Ec(B)−Ec(A)

)
, 0
})p

,

where wAB weights the error term for a pair. When power p is 1 or 2, we can reduce

this optimization problem to a linear or quadratic program as follows. We introduce

a vector of variables e with an entry eAB for each pair (A,B) ∈ P , along with the

inequalities,

eAB ≥ 0,

eAB ≥
(
F (B)−F (A)

)
−
(
Ec(B)−Ec(A)

)
,

which are linear in variables c and e. We then minimize the objective function,∑
(A,B)∈P

wAB (eAB)p,

which is linear or quadratic in the variables for p = 1 or 2.

For a set P of m pairs, these programs have m+ t variables and m inequalities,

where m = O(n2) in terms of the number of examples n. For the programs to be

manageable for large n, set P must be quite sparse.

We can select a sparse set P of important pairs using one of two methods:

threshold-minimum accuracy difference pairs, or distributed-example pairs. Recall

that the training set S of examples consists of alternate alignments of the sequences

in benchmark reference alignments, where the alternates are generated by aligning

the benchmark under a constant number of different parameter choices.

Threshold-difference pairs

While we would like an accuracy estimator that matches the difference in true ac-

curacy between any two alignments, in parameter advising we are only concerned

with choosing among alignments over the same sets of sequences. With threshold-

difference pairs, we include in P only pairs of alignments (A,B) of the same bench-

mark. In particular, we include all such pairs where F (A)− F (B) ≥ ε. Here ε > 0

40

is a tunable threshold; if the difference in accuracy is smaller than this threshold,

we exclude it from training, as its effect on the parameter advisor is minimal, and it

makes the linear or quadratic problem much harder to solve. As ε approaches 0, the

better the estimator will be at distinguishing small differences, but more constraints

will be included in the program increasing the running time of the solver. For ex-

ample pairs under this model, we set the weight wAB to be 1
|B(C)| , where B gives the

corresponding bin for benchmarks aligned under the default parameter settings, and

C is the alignment under the default parameter settings of the benchmark sequences

that A and B are aligning.

Distributed-example pairs

An estimator that is designed for parameter advising should rank the highest ac-

curacy alternate alignment for a benchmark above the other alternates for that

benchmark. Consequently, for each benchmark we select for P its highest-accuracy

alternate, paired with its other alternates for which their difference in accuracy is

at least ε, where ε is a tunable threshold. (Notice this picks O(n) pairs on the

n examples.) For the estimator to generalize beyond the training set, it helps to

also properly rank alignments between benchmarks. To include some pairs between

benchmarks, we choose the minimum, maximum, and median accuracy alignments

for each benchmark, and form one list L of all these chosen alignments, ordered

by increasing accuracy. Then for each alignment A in L, we scan L to the right

to select the first k pairs (A,B) for which F (B) ≥ F (A) + i δ where i = 1, . . . , k,

and for which B is from a different benchmark than A. While the constants ε ≥ 0,

δ ≥ 0, and k ≥ 1 control the specific pairs that this procedure selects for P , it

always selects O(n) pairs on the n examples.

Weighting distributed-example pairs

When fitting to accuracy differences, we again weight the error terms, which are now

associated with pairs, to correct for sampling bias within P . We want the weighted

41

pairs to treat the entire accuracy range equally, so the fitted estimator performs

well at all accuracies. As when fitting to accuracy values, we partition the example

alignments in S into bins B1, . . . ,Bk according to their true accuracy. To model

equal weighting of accuracy bins by pairs, we consider a pair (A,B) ∈ P to have

half its weight wAB on the bin containing A, and half on the bin containing B. (So

in this model, a pair (A,B) with both ends A,B in the same bin B, places all its

weight wAB on B.) Then we want to find weights wAB > 0 that, for all bins B,

satisfy ∑
(A,B)∈P :A∈B

1
2
wAB +

∑
(A,B)∈P :B ∈B

1
2
wAB = 1.

In other words, the pairs should weight bins uniformly.

We say a collection of weights wAB are balanced if they satisfy the above property

on all bins B. While balanced weights do not always exist in general, we can identify

an easily-satisfied condition that guarantees they do exist, and in this case find

balanced weights by the following graph algorithm.

Construct an undirected graph G whose vertices are the bins Bi and whose

edges (i, j) go between bins Bi,Bj that have an alignment pair (A,B) in P with

A ∈ Bi and B ∈ Bj. (Notice G has self-loops when pairs have both alignments in

the same bin.) Our algorithm first computes weights ωij on the edges (i, j) in G,

and then assigns weights to pairs (A,B) in P by setting wAB := 2ωij/cij, where

bins Bi,Bj contain alignments A,B, and cij counts the number of pairs in P between

bins Bi and Bj. (The factor of 2 is due to a pair only contributing weight 1
2
wAB to a

bin.) A consequence is that all pairs (A,B) that go between the same bins get the

same weight wAB.

During the algorithm, an edge (i, j) in G is said to be labeled if its weight ωij has

been determined; otherwise it is unlabeled. We call the degree of a vertex i the total

number of endpoints of edges in G that touch i, where a self-loop contributes two

endpoints to the degree. Initially all edges of G are unlabeled. The algorithm sorts

the vertices of G in order of nonincreasing degree, and then processes the vertices

from highest degree on down.

42

In the general step, the algorithm processes vertex i as follows. It accumulates w,

the sum of the weights ωij of all labeled edges that touch i; counts u, the number of

unlabeled edges touching i that are not a self-loop; and determines d, the degree of i.

To the unlabeled edges (i, j) touching i, the algorithm assigns weight ωij := 1/d if

the edge is not a self-loop, and weight ωii := 1
2
(1− w − u

d
) otherwise.

This algorithm assigns balanced weights if in graph G, every bin has a self-loop,

as stated in the following theorem.

Theorem 1 (Finding Balanced Weights) Suppose every bin B has some pair

(A,B) in P with both alignments A,B in B. Then the above graph algorithm finds

balanced weights.

Proof We will show that: (a) for every edge (i, j) in G, its assigned weight

satisfies ωij > 0; and (b) for every vertex i, the weights assigned to its incident

edges (i, j) satisfy ∑
(i,j) : j 6=i

ωij + 2ωii = 1.

From properties (a) and (b) it follows that the resulting weights wAB are balanced.

The key observation is that when processing a vertex i of degree d, the edges

touching i that are already labeled will have been assigned a weight ωij ≤ 1/d,

since the other endpoint j must have degree at least d (as vertices are processed

from highest degree on down). Unlabeled edges touching i, other than a self-loop,

get assigned weight ωij = 1/d > 0. When assigning weight ωii for the unlabeled

self-loop, the total weight w of incident labeled edges satisfies w ≤ (d−u−2)/d, by

the key observation above and the fact that vertex i always has a self-loop which

contributes 2 to its degree. This inequality in turn implies ωii ≥ 1/d > 0. Thus

property (a) holds.

Furthermore, twice the weight ωii assigned to the self-loop takes up the slack

between 1 and the weights of all other incident edges, so property (b) holds as well.

2

43

Regarding the condition in Theorem 1, if there are bins without self-loops, bal-

anced weights do not necessarily exist. The smallest such instance is when G is a

path of length 2.

Notice that we can ensure the condition in Theorem 1 holds if every bin has at

least two example alignments: simply add a pair (A,B) to P where both alignments

are in the bin, if the procedure for selecting a sparse P did not already. When the

training set S of example alignments is sufficiently large compared to the number of

bins (which is within our control), every bin is likely to have at least two examples.

So Theorem 1 essentially guarantees that in practice we can fit our estimator using

balanced weights.

For k bins and m pairs, the pair-weighting algorithm can be implemented to run

in O(k + m) time, using radix sort to map pairs in P to edges in G, and counting

sort to order the vertices of G by degree.

Summary

In this chapter, we have developed an accuracy estimator that is a linear combination

of feature functions, and provided two approaches to learning the coefficients of

this estimator. Chapter 3 next describes the specific features that along with this

framework make up the Facet accuracy estimator. Results on using the Facet

estimator with the feature functions described in the next chapter are presented in

Chapter 6.

44

CHAPTER 3

The Facet Estimator

Overview

In Chapter 2, we described a general framework for creating an alignment accuracy

estimator that is a linear combination of feature functions, and for learning the

coefficients of such an estimator. In this chapter, we explore the feature functions

used in our accuracy estimator Facet. Some of the features we use are standard

metrics that are common for measuring multiple sequence alignment quality, such

as amino acid percent identity and gap extension density, but many of the most

reliable features are novel. The strongest feature functions tend to use predicted

secondary structure. We describe in detail the most accurate and novel features:

secondary structure blockiness and secondary structure consensus.

This chapter was adapted from portions of previous publications (DeBlasio et al.,

2012b; Kececioglu and DeBlasio, 2013).

3.1 Introduction

In Section 1.3.1 we described two classes of accuracy estimators: scoring-function-

based and support-based. While our approach is within the general scoring-function-

based category, compared to prior such approaches, we:

(a) introduce several novel feature functions that measure non-local proper-

ties of an alignment and have stronger correlation with accuracy (such

as Secondary Structure Blockiness, described here in Section 3.2.1),

(b) consider larger classes of estimators beyond linear combinations of fea-

tures (such as quadratic polynomials, described in Chapter 2), and

45

(c) develop new regression formulations for learning an estimator from ex-

amples (such as difference fitting, described in Chapter 2).

Our approach can readily incorporate new feature functions into the estimator, and

is easily tailored to a particular class of alignments by choosing appropriate features

and performing regression.

Compared to support-based approaches, our estimator does not degrade on dif-

ficult alignment instances, where for parameter advising, good accuracy estimation

can have the greatest impact. As shown in our advising experiments in Chapter 6,

support-based approaches lose the ability to detect accurate alignments of hard-to-

align sequences, since for such sequences most alternate alignments are poor and

lend little support to the alignment that is actually most accurate.

In this chapter, we begin by giving descriptions of the feature functions used

in the Facet estimator in Section 3.2. For each feature, we also consider a few

variants.In the next section we discus the most accurate feature function, called

Secondary Structure Blockiness. Section 3.2.13 shows examples of the feature values

for a set of computed alignments. Section 3.3 details our implementation of Facet

in Java. Not only is Facet available as a stand alone tool that can be incorporated

into existing analysis pipelines that include multiple sequence alignment, it can also

be used via an API within other multiple sequence alignment tools.

3.2 Estimator features

The quality of the estimator that results from our approach ultimately rests on the

quality of the features that we consider. We consider twelve features of an alignment,

the majority of which are novel. All are efficiently computable, so the resulting

estimator is fast to evaluate. The strongest feature functions make use of predicted

secondary structure (which is not surprising, given that protein sequence alignments

are often surrogates for structural alignments). Details about protein secondary

structure and, how we predict it for new proteins, can be found in Section 1.4.

Another aspect of some of the best alignment features is that they tend to use

46

non-local information. This is in contrast to standard ways of scoring sequence

alignments, such as with amino acid substitution scores or gap open and extension

penalties, which are often a function of a single alignment column or two adjacent

columns (as is necessary for efficient dynamic programming algorithms). While a

good accuracy estimator would make an ideal scoring function for constructing a

sequence alignment, computing an optimal alignment under such a nonlocal scor-

ing function seems prohibitive (especially since multiple alignment is already NP-

complete for the current highly-local scoring functions). Nevertheless, given that

our estimator can be efficiently evaluated on any constructed alignment, it is well

suited for selecting a sequence alignment from among several alternate alignments,

as we discuss in Chapter 6 in the context of parameter advising (and later chapters

further consider the contexts of ensemble alignment and adaptive local realignment).

Key properties of a good feature function are: (a) it should measure some at-

tribute that discriminates high accuracy alignments from others, (b) it should be

efficiently computable, and (c) its value should be bounded (as discussed at the

beginning of Chapter 2). Bounded functions are easily normalized, and we scale all

our feature functions to the range [0, 1]. We also intend our features to be increasing

functions of, or positively correlated with, alignment accuracy.

The following are the alignment feature functions we consider for our accuracy

estimator. We highlight the first function as it is the most novel, one of the strongest,

and is the most challenging to compute.

3.2.1 Secondary Structure Blockiness

The reference alignments in the most reliable suites of protein alignment benchmarks

are computed by structural alignment of the known three-dimensional structures of

the proteins. The so-called core blocks of these reference alignments, which are the

columns in the reference to which an alternate alignment is compared when measur-

ing its true accuracy, are typically defined as the regions of the structural alignment

in which the residues of the different proteins are all within a small distance threshold

of each other in the superimposed structures. These regions of structural agreement

47

are usually in the embedded core of the folded proteins, and the secondary struc-

ture of the core usually consists of α-helices and β-strands. (Details of secondary

structure and its representation can be found in Section 1.4.) As a consequence, in

the reference sequence alignment, the sequences in a core block often share the same

secondary structure, and the type of this structure is usually α-helix or β-strand.

We measure the degree to which a multiple alignment displays this pattern of

structure by a feature we call Secondary Structure Blockiness. Suppose that for the

protein sequences in a multiple alignment we have predicted the secondary structure

of each protein, using a standard prediction tool such as PSIPRED (Jones, 1999).

Then in multiple sequence alignment A and for given integers k, ` > 1, define a

secondary structure block B to be:

(i) a contiguous interval of at least ` columns of A, together with

(ii) a subset of at least k sequences in A, such that on all columns in this

interval, in all sequences in this subset, all the entries in these columns

for these sequences have the same predicted secondary structure type,

and this shared type is all α-helix or all β-strand.

We call B an α-block or a β-block according to the common type of its entries.

Parameter `, which controls the minimum width of a block, relates to the minimum

length of α-helices and β-strands; we can extend the definition to use different

values `α and `β for α- and β-blocks.

A packing for alignment A is a set P = {B1, . . . ,Bb} of secondary structure blocks

of A, such that the column intervals of the Bi ∈ P are all disjoint. (In other words,

in a packing, each column of A is in at most one block. The sequence subsets for

the blocks can differ arbitrarily.) The value of a block is the total number of residue

pairs (or equivalently, substitutions) in its columns; the value of a packing is the

sum of the values of its blocks.

Finally, the blockiness of an alignment A is the maximum value of any packing

for A, divided by the total number of residue pairs in the columns of A. In other

words, Secondary Structure Blockiness measures the fraction of substitutions in A

48

that are in an optimal packing of α- or β-blocks.

At first glance measuring blockiness might seem hard (since optimal packing

problems are often computationally intractable), yet surprisingly it can actually be

computed in linear time in the size of the alignment, as the following theorem states.

The main idea is that evaluating blockiness can be reduced to solving a longest path

problem on a directed acyclic graph of linear size.

Theorem 2 (Evaluating Blockiness) Given a multiple alignment A of m protein

sequences and n columns, where the sequences are annotated with predicted secondary

structure, the blockiness of A can be computed in O(mn) time.

Proof The key is to not enumerate subsets of sequences in A when considering

blocks for packings, and instead enumerate intervals of columns of A. Given a

candidate column interval I for a block B, we can avoid considering all possible

subsets of sequences, since there are only two possibilities for the secondary structure

type s of B, and the sequences in B must have type s across I. To maximize the

value of B, we can collect all sequences in A that have type α across I (if any), all

sequences that have type β across I, and keep whichever subset has more sequences.

Following this idea, given alignment A, we form an edge-weighted, directed

graph G that has a vertex for every column of A, plus an artificial sink vertex,

and an edge of weight 0 from each column to its immediate successor, plus an edge

of weight 0 from the last column of A to the sink. We call the vertex for the first

column of A the source vertex. We could then consider all intervals I of at least `

columns, test whether the best sequence subset for each I as described above has

at least k sequences, and if so, add an edge to G from the first column of I to the

immediate successor of the last column of I, weighted by the maximum value of a

block with interval I. A longest path in the resulting graph G from its source to its

sink then gives an optimal packing for A, and the blockiness of A is the length of

this longest path divided by the total number of substitutions in A. This graph G

would have Θ(n2) edges, however, and would not lead to an O(mn) time algorithm

for blockiness. Instead, we only add edges to G for such intervals I whose number

49

of columns, or width, is in the range [`, 2`−1]. Any block B whose interval has

width at least ` is the concatenation of disjoint blocks whose intervals have widths

in the above range. Furthermore, the value of block B is the sum of the values of

the blocks in the concatenation. Only adding to G edges in the above width range

gives a sparse graph with O(n) vertices and just O(`n) edges, which is O(n) edges

for constant `.

To implement this algorithm, first constructG in O(mn) time by (1) enumerating

the O(n) edges of G in lexicographic order on the pair of column indices defining the

column interval for the edge, and then (2) determining the weight of each successive

edge e in this order in O(m) time by appending a single column of A to form the

column interval for e from the shorter interval of its predecessor. Graph G is acyclic,

and a longest source-sink path in a directed acyclic graph can be computed in time

linear in its number of vertices and edges (Cormen et al., 2009, pp. 655–657) so the

optimal packing in A by blocks can be obtained from G in O(n) time. This takes

O(mn) time in total. 2

There are a few further details in how we use Secondary Structure Blockiness in

practice which are discussed below.

(a) Blocks are calculated first the on structure classes α-helix and β-strand.

We have an option to then also construct coil blocks on the columns of an

alignment that are not already covered by α-helix and β-strand blocks.

In practice, we found that including this second coil pass increases the

advising accuracy over only including blocks for non-coil classes.

(b) We also specify a minimum number of rows k in the definition of a block.

We fine that in practice, blockiness shows the best performance when

this minimum is set to k = 2 rows. While using a minimum of k = 1

would not have affected the results if we only used α− or β−blocks, using

k > 1 increased the number of columns that could be included in coil

blocks.

(c) Permitting gap characters in blocks allows them to be extended to regions

50

that may have single insertions or deletions in one or more sequences.

When gaps are allowed in a block they do not contribute to the value

of the block (as the value is still defined as the number of residue pairs

in the columns and rows of the block), but they can extend a block to

include more rows. We find that including gaps increases the accuracy

advising with of blockiness in practice.

(d) In reality, α-helix and β-strand physically both have a minimum number

of amino acids to form their structures. We have two modes to capture

this: one that sets the minimum based on actual physical sizes and one

that sets the minimums to the same length. In the unequal mode, the

minimum sizes α-helix, `α = 4; β-strand, `β = 3; and coil, `c = 2. In

equal mode, `α = `β = `c = 2. We find that in practice, the unequal

mode gives better advising accuracy.

(e) The secondary structure prediction tool PSIPRED outputs confidence val-

ues pt for each structure type t ∈ {α, β, c}. These can be used to choose a

single structure prediction at each position in a protein, by assigning the

prediction with the highest confidence value. Alternately, we can choose

a threshold τ , and say that a residue in the protein has not just one

structure type, but all structure types with pt > τ . In this way, residues

can be in multiple blocks of different structure types if both types have

high confidence; in the final packing however, it will only be in one since

the blocks of a packing are column-disjoint. We found that in practice,

using confidences in this way to allow ambiguous structural types was

detrimental to advising accuracy on the benchmarks we considered.

The remaining feature functions in Facet are simpler to compute than Secondary

Structure Blockiness.

51

3.2.2 Secondary Structure Agreement

The secondary structure prediction tool PSIPRED (Jones, 1999) outputs confidence

values at each residue that are intended to reflect the probability that the residue

has each of the three secondary structure types. Denote these three confidences for a

residue i, r (the residue in the i-th sequence at the r-th column), normalized so they

add up to 1, by pα(i, r), pβ(i, r), and pγ(i, r). Then we can estimate the probability

that two sequences i, j in column r have the same secondary structure type that is

not coil, by looking at the support for that pair from all intermediate sequences k.

We first define the similarity of two residues (i, r) and (j, r) in column r as

S(i, k, r) := pα(i, r) pα(k, r) + pβ(i, r) pβ(k, r).

To measure how strongly the secondary structure locally agrees between sequences

i and j around column r, we compute a weighted average P of S in a window of

width 2`+ 1 centered around column r,

P (i, j, r) :=
∑
−`≤p≤`

wp S(k, j, r + p)

where the weights wp form a discrete distribution that peaks at p = 0 and is

symmetric.

We can define the support for the pair i, j from intermediate sequence k as the

product of the similarities of each i and j with k, P (i, k, r)P (k, j, r). The support

Q for pair i, j from all intermediate sequences is then defined as

Q(i, j, r) :=
∑

0≤k≤N
i 6=k
j 6=k

P (i, k, r) P (k, j, r),

The value of the Secondary Structure Agreement feature is then the average

of Q(i, j, r) over all sequence pairs i, j in all columns r.

This is the feature with the largest running time, but is also one of the strongest

features. Is running time is O(m3n`) for m sequences in an alignment of length n.

The value of ` and w must be set by the user. We tried various values for

both, and found that ` = 2 and w = (0.7, 0.24, 0.28, 0.24, 0.7) gave the best advising

results.

52

3.2.3 Gap Coil Density

A gap in a pairwise alignment is a maximal run of either insertions or deletions. For

every pair of sequences, there is a set of gap-residue pairs (residues that are aligned

with gap characters) which each has an associated secondary structure prediction

given by PSIPRED (the structure assigned to the residue in the pair). The Gap

Coil Density feature measures the fraction of all gap-residue pairs with a secondary

structure type of coil.

As described, computing Gap Coil Density may seem quadratic in the number of

sequences. By simply counting the number of gaps gi, coil-labeled non-gap entries

γi, and non-coil-labeled non-gap si entries in column i, we can compute this feature

by ∑
columns i

gi γi∑
columns i

gi (γi + si)
.

All this counting takes linear time total in the number of sequences, so the running

time for computing Gap Coil Density is O(mn).

Alternately, we can use PSIPRED confidences; the feature value is then the average

coil confidences over all gap-residue pairs in the alignment. We find that in practice,

using these confidences gives better advising accuracy.

3.2.4 Gap Extension Density

This feature counts the number of null characters in the alignment (the dashes

that denote gaps). This is related to affine gap penalties (Gotoh 1982), which are

commonly used to score alignments. We normalize this count by the total number

of alignment entries, or an upper bound U on the number of possible entries. The

reason to use the upper bound is so that we can compare the feature value across

alignments of the same sequences that may have different alignment lengths, while

still yielding a feature value that lies in the range [0, 1]. We calculate this upper

53

bound as

U :=

(
N

2

)(
max
s∈S
|s| + max

s′∈S′
|s′|
)
,

where S ′ := S − argmaxs∈S |s|, ls that the second max gives the length of the

second longest sequence in S. We find that normalizing by U gives better advising

accuracies.

As the quantity described above is generally decreasing in to alignment accuracy

(since more gaps generally indicates a lower quality alignment), for the actual feature

value we use 1 minus this ratio described above.

Gap Extension Density essentially counts the number of null characters in an

alignment, which can be done in linear time for each sequence. Thus Gap Extension

Density can be computed in O(mn) time. The lengths of the input sequences can

be computed in linear, so U can be computed in this same amount of time.

3.2.5 Gap Open Density

This feature counts the number of runs of null characters in the rows of the alignment

(which also relates to affine gap penalties). Again we provide options to normalize

by the total length of all such runs, or by upper-bound U of alignment size (which

tends to give better advising accuracy). Just as with Gap Extension Density, Gap

Open Density can be computed in O(mn) time.

Similar to Gap Extension Density, the ratio described above is generally decreas-

ing in alignment accuracy, so for the feature value we use 1 minus the ratio described

above.

3.2.6 Gap Compatibility

As in cladistics, we encode the gapping pattern in the columns of an alignment as

a binary state: residue (1), or null character (0). For an alignment in this encoding

we then collapse together adjacent columns that have the same gapping pattern.

We evaluate this reduced set of columns for compatibility by checking whether a

perfect phylogeny exists on them, using the so-called “four gametes test” on pairs

54

of columns. More specifically, a pair of columns passes the four gametes test if at

most three of the four possible patterns 00, 01, 10, 11 occur in the rows of these

two columns. A so-called perfect phylogeny exists, in which the binary gapping

pattern in each column is explained by a single insertion or deletion event on an

edge of the tree, if and only if all pairs of columns pass this test. (See Gusfield, 1997

pages 462-463, or Estabrook et al., 1975.) The Gap Compatibility feature measures

the fraction of pairs of columns in the reduced binary data that pass this test, which

is a rough measure of how tree-like the gapping pattern is in the alignment. Rather

than determining whether a complete column pair passes the four-gametes test, we

can instead measure the fraction of a column pair that pass this test (the largest

subset of rows that pass the test divided by the total number of rows), averaged

over all pairs of columns. We find that this second version of the feature works

better in practice, most likely because it is a less strict measure of the evolutionary

compatibility of the gaps.

For each pair of columns, we can compute the encoding of each row in constant

time, so we can collect the counts for the four-gametes states in linear time in the

number of sequences for a given column pair. Since we must examine all pairs

of columns, the running time for Gap Compatibility is quadratic in the number

of columns. Evaluating this feature takes O(m2n) time for an alignment with m

sequences and n columns.

3.2.7 Substitution Compatibility

Similar to Gap Compatibility, we encode the substitution pattern in the columns of

an alignment by a binary state: using a reduced amino acid alphabet of equivalency

classes, residues in the most prevalent equivalency class in the column are mapped

to 1, and all others to 0. This feature measures the fraction of encoded column pairs

that pass the four-gametes test, which again is a rough measure of how tree-like the

substitution pattern is in the alignment. Again we tested have options for using both

whole-column and fractional-column measurements; we find that fractional-column

measurements give better accuracy. We also considered the standard reduced amino-

55

acid alphabets with 6, 10, 15, and 20 equivalency classes, and find the 15-class

alphabet, gives the strongest correlation with accuracy.

Just like Gap Compatibility, evaluating Substitution Compatibility takes

O(m2n) time.

3.2.8 Amino Acid Identity

This feature is usually called simply “percent identity.” In each induced pairwise

alignment, we measure the fraction of substitutions in which the residues have

the same amino-acid equivalency class, where we use the reduced alphabet with

10 classes. The feature averages this fraction over all induced pairwise alignments.

We can compute Amino Acid Identity for a whole alignment by determining

the frequency of each amino-acid class in each column, and summing the number

of pairs of each alphabet element in a column. Computing amino-acid identity in

this way takes O(mn + n|Σ|) time for amino-acid equivalency Σ. Assuming |Σ| is

constant, this is O(mn) time.

3.2.9 Secondary Structure Identity

This feature is like Amino Acid Identity, except instead of the protein’s amino-

acid sequence, we use the secondary-structure sequence predicted for the protein by

PSIPRED (Jones, 1999), which is a string over the 3-letter secondary structure alpha-

bet. Similar to the approach described for Amino Acid Identity, we can compute

Secondary Structure Identity in O(mn) time (where the structural alphabet here is

{α, β, γ}, so |Σ| = 3).

We also consider a second version that uses the secondary structure confidences,

where instead of counting identities, we calculate the probability that a pair i, j of

residues has the same secondary structure, by

pα(i)pα(j) + pβ(i)pβ(j) + pγ(i)pγ(j).

In this version, we cannot use the prior running-time reduction trick, and must

examine all pairs of rows in a column, which takes total time O(m2n) for and

56

alignment with m rows and n columns.

3.2.10 Average Substitution Score

This computes the total score of all substitutions in the alignment, using a BLSM62

substitution-scoring matrix (Henikoff and Henikoff, 1992) that has been shifted and

scaled so the amino acid similarity scores are in the range [0, 1]. We can normalize

this total score by the number of substitutions in the alignment, or by upper bound

U given earlier so the feature value is comparable between alignments of the same

sequences. We find that normalizing by U provides a feature value that correlates

better with true accuracy.

Similar to the running-time reduction of Amino Acid Identity, we can count the

frequency of each amino acid in each column of an alignment, and sum the BLSM62

score for each possible amino-acid substitution multiplied by the product of the

frequency for the two amino acids. This reduces the running time to O(mn+n|Σ|2),
which is faster than considering all pairs of rows when |Σ| < n (otherwise we can

use the näıve O(m2n) approach).

3.2.11 Core Column Density

For this feature, we first predict core columns as those that only contain residues

(and not gap characters) and whose fraction of residues that have the same amino

acid equivalency class, for the 10-class alphabet, is above a threshold. The feature

then normalizes the count of predicted core columns by the total number of columns

in the alignment. We considered the standard reduced alphabets with 6, 10, 15,

and 20 equivalency classes, and use the 10-class alphabet, as it gave the strongest

correlation with true accuracy. We also tested various thresholds and found that a

value of 0.9 gave the best trend.

Using the same trick described earlier for Amino Acid Identity, a “core” label

can be assigned to the column in linear time, therefore we can evaluate this näıve

Core Column Density in O(mn) time. We will later develop a more sophisticated

57

method for predicting core columns in an alignment in Chapter 9.

3.2.12 Information Content

This feature measures the average entropy of the alignment (Hertz and Stormo,

1999), by summing over the columns the log of the ratio of the abundance of a

specific amino acid in the column over the background distribution for that amino

acid, normalized by the number of columns in the alignment.

Amino-acid frequencies can be calculated in linear time for each column, and

background frequencies for each amino acid can also be found in one pass across

the whole alignment. We then evaluate information content in each column by

making one pass over the frequencies for each element in the alphabet. Computing

Information Content for an input alignment in O(mn+m|Σ|) time for alphabet Σ.

Once again, if we assume the alphabet size is constant, this running time is O(mn).

We considered the standard reduced alphabets with 6, 10, 15, and 20 equivalence

classes, and used the 10-class alphabet, which gave the strongest correlation with

true accuracy.

3.2.13 Results

Figure 3.1 shows the correlation of each of these features described above with true

accuracy. We describe this set of benchmarks and testing procedures in full detail in

Chapter 6. Briefly, we collected a total of 861 benchmark alignments from the BENCH

suite of Edgar (2009), which consists of 759 benchmarks, supplemented by a selection

of 102 benchmarks from the PALI suite of Balaji et al. (2001). For each of these

benchmarks we used the Opal aligner to produce a new alignment of the sequences

under its default parameter setting. For each of these computed alignments, we

know the underlying correct alignment, so we can evaluate the true accuracy of the

computed alignment. We also calculated each of the 12 feature values for each of

these alignments. The figure shows the correlation of each of the features with true

accuracy, where each of the 861 circles in each plot is one benchmark with its true

58

accuracy on the horizontal axis and feature function value on the vertical. Notice

that while all of the features generally have a positive trend with true accuracy, the

ranges of the feature values differ substantially.

This comprises the set of features considered for constructing the Facet accu-

racy estimator. The next section describes the software implementing the Facet

estimator.

3.3 Software

We implemented the Facet estimator using the Java programming language. The

software can be used in one of three ways:

(1) Command line – For a given set of sequences, the user must first run

PSIPRED to predict the secondary structure for each unaligned sequence.

The scripts provided put these predictions in a format that is readable

by Facet. Facet can then be invoked for each alignment in FASTA or

CLUSTAL format, and the result is returned via standard out. Details

of running Facet for alignments of the same sequences is shown in Fig-

ure 3.3. The Facet coefficients can also be changed via command line

options (not shown in the figure), which override the default feature co-

efficients.

(2) Application Programming Interface – Within another Java appli-

cation, a user can obtain the Facet score of an alignment by first creating

a FacetAlignment object, which encapsulates the sequence alignment in-

formation as well as the secondary structure predictions. The user can

then invoke Facet through a method call. An example of how to use

Facet through the API is shown in Figure 3.2. The Facet coefficients

can be changed in the API via a second argument to the method call

(not shown in the figure).

(3) Within Opal – When creating an alignment using the Opal aligner,

59

True Accuracy
0 0.2 0.4 0.6 0.8 1

B
lo

c
k

in
e

s
s

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
tr

u
c

tu
re

 A
g

re
e

m
e

n
t

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a

p
 C

o
il

 D
e

n
s

it
y

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a

p
 E

x
te

n
s

io
n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a

p
 O

p
e

n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a

p
 C

o
m

p
a

ti
b

il
it

y

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
u

b
s

ti
tu

ti
o

n
 C

o
m

p
.

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

A
m

in
o

 A
c

id
 I

d
e

n
ti

ty

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
tr

u
c

tu
re

 I
d

e
n

ti
ty

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 1

S
u

b
s

ti
tu

ti
o

n
 S

c
o

re

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

C
o

re
 C

o
lu

m
n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

In
fo

rm
a

ti
o

n
 C

o
n

te
n

t

0.5

1

1.5

2

2.5

3

Figure 3.1: Correlation of features with true accuracy. The scatter plots
show values of all twelve feature functions considered for the Facet estimator, on
the 861 benchmarks used for testing (described in Chapter 6), using the default
parameter setting for the Opal aligner. Each circle is one benchmark alignment
plotted with its true accuracy on the horizontal axis (since we know the reference,
we can calculate true accuracy) and its feature value on the vertical axis. The
line shows is a weighted least-squares line where the weight for a benchmark is
calculated to remove the bias towards benchmarks with high accuracy under the
default parameter settings. The precise form of the weighting us described in detail
in Chapter 6.

60

Figure 3.2: Using the Facet tool API.

$./PSIPRED_wrapper.pl seqs.fa > seqs_struc 2> seqs_prob
$./FACET.sh align1.fa seqs_struc seqs_prob
align1.fa! ! 0.565
$./FACET.sh align2.fa seqs_struc seqs_prob
align2.fa! ! 0.868
$./FACET.sh align3.fa seqs_struc seqs_prob
align3.fa !0.342

Facet values on
‘standard out’

Only predict
structure once

Figure 3.3: Using the Facet tool on the command line.

a user can pass the alignment structure via the --facet structure

command-line option. The structure format given to Facet embedded

within Opal is different from the format for stand-alone Facet. When

the structure is given to Opal, the Facet score is printed to standard out,

or can be included in the output filename. Section 6.6.1 gives details on

the changes made to Opal related to Facet and parameter advising.

All three implementations of Facet can be found on the Facet website at http:

//facet.cs.arizona.edu/ (see Figure 3.4). Along with Facet, and links to the

Opal software, there are videos explaining our methodology, and supplementary

data used in our experiments.

Summary

In this chapter, we have described several easily-computable feature functions for

estimating alignment accuracy. Using these features in the framework described in

Chapter 2 yields our new accuracy estimator Facet. We later give the coefficients

for the feature functions, when trained on example alignments from benchmarks

with known reference alignments, in Chapter 6.

http://facet.cs.arizona.edu/
http://facet.cs.arizona.edu/

61

Figure 3.4: The Facet Website.

62

CHAPTER 4

The Optimal Advisor Problem

Overview

In this chapter, we define the problem of constructing an optimal advisor: finding

both the estimator coefficients and advisor set that give the highest average advis-

ing accuracy. We can also restrict this problem to just finding optimal estimator

coefficients for a given advisor set and finding an optimal advisor set for a given esti-

mator. The optimal advisor problem is NP-complete (as are the restrictied optimal

estimator and optimal advisor set problems).

This chapter was adapted from portions of previous publications (DeBlasio and

Kececioglu, 2014a, 2016).

4.1 Introduction

A parameter advisor has two components: (i) the advisor estimator, which ranks

alternate alignments that the advisor will choose among; and (ii) the advisor set,

which should be small but still provide for each input at least one good alternate

alignment that the advisor can choose. These two components are very much in-

terdependent. A setting of estimator coefficients may work well for one advisor set,

but may not be able to distinguish accurate alignments for another. Similarly for

a given advisor set, one setting of advisor coefficients may work well while another

may not.

An optimal advisor is both an advisor estimator and and advisor set that together

produce the highest average advising accuracy on a collection of benchmarks. In

this chapter, we consider the problem of constructing an optimal advisor. We also

discuss restrictions of this problem to finding an optimal advisor set for a given

63

estimator, or an optimal estimator for a given advisor set. All three versions of the

problem are NP-complete.

4.2 Learning an optimal advisor

We now define the computational problem of learning an optimal advisor. The

problem has several variations, depending on whether the advisor’s estimator or

set of parameter choices are fixed: (a) simultaneously finding both the best set and

estimator, (b) finding the best set of parameter choices to use with a given estimator,

and (c) finding the best estimator to use with a given set of parameter choices. We

assume throughout that the features used by the advisor’s estimator are given and

fixed.

From a machine learning perspective, the problem formulations find an advisor

that has optimal accuracy on a collection of training data. The underlying training

data is

• a suite of benchmarks, where each benchmark Bi in the suite consists of a

set of sequences to align, together with a reference alignment Ri for these

sequences that represents their “correct” alignment, and

• a collection of alternate alignments of these benchmarks, where each alter-

nate alignment Aij results from aligning the sequences in benchmark i using

a parameter choice j that is drawn from a given universe U of parameter

choices.

Here a parameter choice is an assignment of values to all the parameters of an aligner

that may be varied when computing an alignment. Typically an aligner has multiple

parameters whose values can be specified, such as the substitution scoring matrix

and gap penalties for its alignment scoring function. We represent a parameter

choice by a vector whose components assign values to all these parameters. (So

for protein sequence alignment, a typical parameter choice is a 3-vector specifying

the (i) substitution matrix, (ii) gap-open penalty, and (iii) gap-extension penalty.)

The universe U of parameter choices specifies all the possible parameter choices

64

that might be used for advising. A particular advisor will use a subset P ⊆ U

of parameter choices that it considers when advising. In the special case |P | = 1,

the single parameter choice in set P that is available to the advisor is effectively a

default parameter choice for the aligner.

Note that since a reference alignment Ri is known for each benchmark Bi, the

true accuracy of each alternate alignment Aij for benchmark Bi can be measured

by comparing alignment Aij to the reference Ri. Thus for a set P ⊆ U of parameter

choices available to an advisor, the most accurate parameter choice j ∈ P to use on

benchmark Bi can be determined in principle by comparing the resulting alternate

alignments Aij to Ri and picking the one of highest true accuracy. When aligning

sequences in practice, a reference alignment is not known, so an advisor will instead

use its estimator to pick the parameter choice j ∈ P whose resulting alignment Aij

has highest estimated accuracy.

In the problem formulations below, this underlying training data is summarized

by

• the accuracies aij of the alternate alignments Aij, where accuracy aij mea-

sures how well the computed alignment Aij agrees with the reference align-

ment Ri, and

• the feature vectors Fij of these alignments Aij, where each vector Fij lists

the values for Aij of the estimator’s feature functions.

As we have defined in Chapter 2, for an estimator that uses t feature functions, each

feature vector Fij is a vector of t feature values,

Fij = (gij1 gij2 · · · gijt),

where each feature value gijh is a real number satisfying 0 ≤ gijh ≤ 1. Feature vec-

tor Fij is used by the advisor to evaluate its accuracy estimator E on alignment Aij.

Let the coefficients of the estimator E be given by vector

c = (c1 c2 · · · ct).

Then the value of accuracy estimator E on alignment Aij is given by the inner

65

product

Ec(Aij) = c · Fij =
∑

1≤h≤t

ch gijh. (4.1)

Informally, the objective function that the problem formulations seek to maxi-

mize is the average accuracy achieved by the advisor across the suite of benchmarks

in the training set. The benchmarks may be nonuniformly weighted in this aver-

age to correct for bias in the training data, such as the over-representation of easy

benchmarks that typically occurs in standard benchmark suites.

A subtle issue that the formulations must take into account is that when an

advisor is selecting a parameter choice via its estimator, there can be ties in the

estimator value, so there may not be a unique parameter choice that maximizes

the estimator. In this situation, we assume that the advisor randomly selects a

parameter choice among those of maximum estimator value. Given this randomness,

we measure the performance of an advisor on an input by its expected accuracy on

that input.

Furthermore, in practice any accuracy estimator inherently has error (otherwise

it would be equivalent to true accuracy), and a robust formulation for learning an

advisor should be tolerant of error in the estimator. Let ε ≥ 0 be a given error

tolerance, and P be the set of parameter choices used by an advisor. We define

the set Oi(P) of parameter choices that the advisor could potentially output for

benchmark Bi as

Oi(P) =
{
j ∈ P : Ec(Aij) ≥ e∗i − ε

}
, (4.2)

where e∗i := max
{
Ec(Ai̃) : ̃ ∈ P

}
is the maximum estimator value on bench-

mark Bi. The parameter choice output by an advisor on benchmark Bi is selected

uniformly at random among those in Oi(P). Note that when ε = 0, set Oi(P) is

simply the set of parameter choices that are tied for maximizing the estimator. A

nonzero tolerance ε > 0 can aid in learning an advisor that has improved general-

ization to testing data.

The expected accuracy achieved by the advisor on benchmark Bi using set P is

66

then

Ai(P) =
1

|Oi(P)|
∑

j ∈Oi(P)

aij . (4.3)

In learning an advisor, we seek a set P that maximizes the advisor’s expected

accuracy Ai(P) on the training benchmarks Bi.

Formally, we want an advisor that maximizes the following objective function,

fc(P) =
∑
i

wi Ai(P) , (4.4)

where i indexes the benchmarks, and wi is the weight placed on benchmark Bi. (The

benchmark weights are to correct for possible sampling bias in the training data.) In

words, objective fc(P) is the expected accuracy of the parameter choices selected by

the advisor averaged across the weighted training benchmarks, using advisor set P

and the estimator given by coefficients c. We write the objective function as f(P)

without subscript c when the estimator coefficient vector c is fixed or understood

from context.

We use the following argmin and argmax notation. For a function f and a

subset S of its domain,

argmin
{
f(x) : x ∈ S

}
denotes the set of all elements of S that achieve the minimum value of f , or in other

words, the set of minimizers of f on S. Similarly, argmax is used to denote the set

of maximizers.

4.2.1 Optimal Advisor

We first define the problem of finding an optimal advisor : that is, simultaneously

finding an advisor estimator and an advisor set that together yields the highest

average advising accuracy.

In the problem definition,

• n is the number of benchmarks, and

• t is the number of alignment features.

67

Set Q denotes the set of rational numbers.

Definition 1 (Optimal Advisor) The Optimal Advisor problem takes as in-

put

• cardinality bound k ≥ 1,

• universe U of parameter choices,

• weights wi ∈ Q on the training benchmarks Bi, where each wi ≥ 0 and∑
iwi = 1,

• accuracies aij ∈ Q of the alternate alignments Aij, where each 0≤aij≤1,

• feature vectors Fij ∈ Qt for the alternate alignments Aij, where each fea-

ture value gijh in vector Fij satisfies 0≤gijh≤1, and

• error tolerance ε ∈ Q where ε ≥ 0.

The output is

• estimator coefficient vector c ∈ Qt, where each coefficient ci in vector c

satisfies ci ≥ 0 and
∑

1≤i≤t ci = 1, and

• set P ⊆ U of parameter choices for the advisor, with |P | ≤ k,

that maximizes objective fc(P) given by equation (4.4).

2

4.2.2 Advisor Set

We can restrict the optimal advisor problem to finding an optimal set of parameter

choices for advising with a given estimator.

Definition 2 (Advisor Set) The Advisor Set problem takes as input

• weights wi on the benchmarks,

• accuracies aij of the alternate alignments,

• feature vectors Fij for the alternate alignments,

• coefficients c = (c1 · · · ct) ∈ Qt for the estimator, where each ci ≥ 0 and∑
1≤i≤t ci = 1, and

68

• error tolerance ε.

The output is

• advisor set P

that maximizes objective fc(P) given by equation (4.4). 2

4.2.3 Advisor Estimator

Similarly, we can define the problem of finding an optimal estimator where the set

of parameter choices for the advisor is now given.

Definition 3 (Advisor Estimator) The Advisor Estimator problem takes as in-

put

• weights wi on the benchmarks,

• accuracies aij of the alternate alignments,

• feature vectors Fij for the alternate alignments,

• advisor set P , and

• error tolerance ε.

The output is

• coefficients c = (c1 · · · ct) ∈ Qt for the estimator, where each ci ≥ 0 and∑
1≤i≤t ci = 1,

that maximize objective fc(P) given by equation (4.4). 2

For Advisor Estimator, resolving ties to pick the worst among the parameter

choices that maximize the estimator, as in the definition of A(i) in equation (4.4),

is crucial, as otherwise the problem formulation becomes degenerate. If the advisor

is free to pick any of the tied parameter choices, it can pick the tied one with

highest true accuracy; if this is allowed, the optimal estimator c∗ that is found by

the formulation would degenerate to the flattest possible estimator that evaluates

all parameter choices as equally good (since the degenerate flat estimator would

69

make the advisor appear to match the performance of a perfect oracle on set P).

Resolving ties in the worst-case way eliminates this degeneracy.

4.3 Complexity of learning optimal advisors

We now prove that Advisor Set, the problem of learning an optimal parameter set

for an advisor (given by Definition 2 of Section 4.2) is NP-complete, and hence

is unlikely to be efficiently solvable in the worst-case. As is standard, we prove

NP-completeness for a decision version of this optimization problem, which is a

version whose output is a yes/no answer (as opposed to a solution that optimizes

an objective function).

The decision version of Advisor Set has an additional input ` ∈ Q, which will

lower bound the objective function. The decision problem is to determine, for the

input instance k, U, wi, aij, Fij, c, ε, `, whether or not there exists a set P ⊆ U with

|P |≤k for which the objective function has value fc(P) ≥ `.

Theorem 3 (NP-completeness of Advisor Set) The decision version of Advi-

sor Set is NP-complete.

Proof We use a reduction from the Dominating Set problem, which is NP-

complete (Garey and Johnson, 1979, problem GT2). The input to Dominating Set

is an undirected graph G = (V,E) and an integer k, and the problem is to decide

whether or not G contains a vertex subset S ⊆ V with |S|≤k such that every vertex

in V is in S or is adjacent to a vertex in S. Such a set S is called a dominating set

for G.

Given an instance G, k of Dominating Set, we construct an in-

stance U,wi, aij, Fij, c, ε, ` of the decision version of Advisor Set as follows.

For the cardinality bound use the same value k, for the number of benchmarks

take n= |V |, and index the universe of parameter choices by U = {1, . . . , n}; have

only one feature (d=1) with estimator coefficients c=1; use weights wi = 1/n,

error tolerance ε = 0, and lower bound ` = 1. Let the vertices of G be indexed

70

V = {1, . . . , n}. (So both the set of benchmarks and the universe of parameter

choices in essence correspond to the set of vertices V of graph G.) Define the

neighborhood of vertex i in G to be N(i) :=
{
j : (i,j) ∈ E

}
∪ {i}, which is the set

of vertices adjacent to i, including i itself. For the alternate alignment accuracies,

take aij = 1 when j ∈ N(i); otherwise, aij = 0. For the feature vectors, assign

Fij = aij.

We claim G, k is a yes-instance of Dominating Set iff k, U, wi, aij, Fij, c, ε, ` is a

yes-instance of Advisor Set.

To show the forward implication, suppose G has a dominating set S ⊆ V with

|S| ≤ k, and consider the advisor set P = S. With the above construction, for every

benchmark, set Oi(P) = N(i) ∩ S, which is nonempty (since S is a dominating set

for G). So Ai(P) = 1 for all benchmarks. Thus for this advisor set P , the objective

function has value fc(P) = 1 ≥ `.

For the reverse implication, suppose advisor set P achieves objective value ` = 1.

Since P achieves value 1, for every benchmark it must be that Ai(P) = 1. By

construction of the aij, this implies that in G every vertex i ∈ V is in P or is

adjacent to a vertex in P . Thus set S = P , which satisfies |S| ≤ k, is a dominating

set for G.

This reduction shows Advisor Set is NP-hard, as the instance of Advisor Set

can be constructed in polynomial time. Furthermore, it is in NP, as we can nonde-

terministically guess an advisor set P , and then check whether its cardinality is at

most k and its objective value is at least ` in polynomial time. Thus Advisor Set is

NP-complete. 2

Note that the proof of Theorem 3 shows Advisor Set is NP-complete for the

special case of a single feature, error tolerance zero, when all accuracies and feature

values are binary, and benchmarks are uniformly weighted.

In general, we would like to find an optimal parameter advisor, which requires

simultaneously finding both the best possible parameter set and the best possi-

ble accuracy estimator. We define the general problem of constructing an optimal

71

parameter advisor as follows.

The decision version of Optimal Advisor, similar to the decision version of Ad-

visor Set, has an additional input ` that lower bounds the objective function.

We next prove that Optimal Advisor is NP-complete. While its NP-hardness

follows from Advisor Set, the difficulty is in proving that this more general problem

is still in the class NP.

Theorem 4 (NP-completeness of Optimal Advisor) The decision version of

Optimal Advisor is NP-complete.

Proof The proof of Theorem 3 shows Advisor Set remains NP-hard for the

special case of a single feature. To prove the decision version of Optimal Advisor

is NP-hard, we use restriction: we simply reduce Advisor Set with a single feature

to Optimal Advisor (reusing the instance of Advisor Set for Optimal Advisor). On

this restricted input with d = 1, Optimal Advisor is equivalent to Advisor Set, so

Optimal Advisor is also NP-hard.

We now show the general Optimal Advisor problem is in class NP. To decide

whether its input is a yes-instance, after first nondeterministically guessing parame-

ter set P ⊆ U with |P | ≤ k, we then make for each benchmark i a nondeterministic

guess for its sets Oi(P) andMi(P) := argmax
{
c · Fij : j ∈ P

}
, without yet know-

ing the coefficient vector c. Call Õi the guess for set Oi(P), and M̃i the guess for

setMi(P), where M̃i ⊆ Õi ⊆ P . To check whether a coefficient vector c exists that

satisfies Oi(P) = Õi and Mi(P) = M̃i, we construct the following linear program

with variables c=(c1 · · · cd) and ξ. The objective function for the linear program is

to maximize the value of variable ξ. The constraints are: ch≥0 and
∑

1≤h≤d ch = 1;

0≤ξ≤1; for all benchmarks i and all parameter choices j∗ ∈ M̃i and j 6∈ M̃i,

c · Fij∗ ≥ c · Fij + ξ ;

for all benchmarks i and all parameter choices j, ̃ ∈ M̃i,

c · Fij = c · Fi̃ ;

72

for all benchmarks and all parameter choices j∗ ∈ M̃i and j ∈ Õi,

c · Fij ≥ c · Fij∗ − ε .

This linear program can be solved in polynomial time. If it has a feasible solution,

then it has an optimal solution (as its objective function is bounded). In an optimal

solution c∗, ξ∗ we check whether ξ∗ > 0. If this condition holds, the guessed sets

Õi, M̃i, correspond to actual sets Oi(P) and Mi(P) for an estimator. For each

benchmark i, we then evaluate Ai(P), and check whether
∑

iwiAi(P) ≥ `. Note

that after guessing the sets P , Õi, and M̃i, the rest of the computation runs in

polynomial time. Thus Optimal Advisor is in NP. 2

Theorem 5 (NP-completeness of Advisor Estimator) The decision version

of Advisor Estimator is NP-complete.

Proof To show Advisor Estimator is NP-hard, we use a similar reduction from

Dominating Set that we used in proving Theorem 3. Given an instance G, k of

Dominating Set, we construct an instance wi, aij, Fij, P, ε, `, δ of the decision ver-

sion of Advisor Estimator, where we use the same cardinality bound k, number of

benchmarks and parameter choices n= |V |, weights wi = 1/n, error tolerance ε= 0,

accuracies aij again defined as before, and lower bound `=1, as we did for Advisor

Set. For the set P of parameter choices for the advisor, we take P ={1, . . . , n}. The

number of features is now t=n. (So in essence the set of benchmarks, the advisor

set, and the set of features all coincide with the set of vertices V .) For the feature

vectors we take Fij = (0 · · · 0 aij 0 · · · 0) which has value aij at location j. This is

equivalent to a feature vector Fij that is all zeroes, except for a 1 at location j if

j = i or vertex j is adjacent to vertex i in G. For the precision lower bound we

take δ = 1/k. Note that this instance of Advisor Estimator can be constructed in

polynomial time.

We claim that G, k is a yes-instance of Dominating Set iff wi, aij, Fij, P, ε, `, δ is

a yes-instance of Advisor Estimator. To show the reverse implication, first notice

that with the chosen δ, coefficient vector c can have at most k nonzero coefficients

73

(since if c has more than k nonzero coefficients,
∑

i ci > k δ = 1, a contradiction).

Let feature subset S ⊆ V be all indices i at which ci > 0. We call S the support

of c, and by our prior observation |S| ≤ k. By construction of the feature vectors,

c · Fij = cj if j ∈ N(i); otherwise, c · Fij = 0. This further implies that Ai(P)=1

if S ∩N(i) is nonempty; otherwise, Ai(P)=0. So if there exists coefficient vector c

such that the objective function achieves value 1, then the support S of c gives a

vertex subset S ⊆ V that is a dominating set for G. For the forward implication,

given a dominating set S ⊆ V for G, take for the estimator coefficients ci=1/|S| if

i ∈ S, and ci = 0 otherwise. The nonzero coefficients of this vector c have value at

least δ, and by the same reasoning as above, each Ai(P) = 1 as S is a dominating

set, so the estimator given by this vector c yields an advisor that achieves objective

value 1, which proves the claim.

We can show Advisor Estimator is in class NP using the same construction used

for proving Optimal Advisor is in class NP. For each benchmark we can make a

nondeterministic choice for its set Õi(P), and compute M̃i. We can then construct

a linear program to determine if these guesses are actual sets for the estimator. The

guesses and solution of the linear program can be performed in polynomial time.

Thus Advisor Estimator is in NP. 2

Summary

In this chapter, we have formally defined the problem of finding an optimal advisor

and two related problems of finding an optimal advisor set and an optimal advisor

estimator. We then proved that all three problems (Optimal Advisor, Advisor Set,

and Advisor Estimator) are NP-complete. In the next chapter, we describe practical

approaches to the Advisor Set problem, and how to model all three problems by

mixed-integer linear programming (MILP).

74

CHAPTER 5

Constructing Advisor

Overview

In this chapter, we consider the problem of learning an opimal set of parameter

choices for a parameter advisor. We consider two forms of the advisor sets problem:

(i) sets that are estimator-unaware (and are optimal for a prefect estimator called

an oracle), and (ii) sets that are optimal for a given accuracy estimator. In this

context the optimal advisor set is one that maximizes the average true accuracy of

the resulting parameter advisor, over a collection of training benchmarks. Chapter 4,

we proved in that learning an optimal set for an advisor is NP-complete. Here we

can model the problem of finding optimal advisor sets as an integer linear program

(ILP). We find this ILP cannot be solved to optimality in practice, so we go on

to develop an efficient approximation algorithm for this problem that finds near-

optimal sets, and prove a tight bound on its approximation ratio.

This chapter was adapted from portions of previous publications (DeBlasio and

Kececioglu, 2014a, 2015).

5.1 Introduction

In Chapter 4, we introduced the advisor set problem and showed that it is NP-

complete. In this chapter, we show how to model the problem of finding opti-

mal advisor sets, and more generally finding optimal advisor, using integer linear

programming. We have found that in practice these integer linear programming

models are not solvable to optimality even on very small inputs. Consequently,

Section 5.3 develops an efficient approximation algorithm, that is guaranteed to find

near-optimal advisor sets for a given estimator.

75

In this chapter we consider how to learn sets of parameter choices for a realistic

advisor, where these sets are tailored to the actual estimator used by the advisor

(as opposed to finding parameter sets for a perfect but unattainable oracle advisor).

While learning such sets that are oprimal is NP-complete, there is an efficient greedy

approximation algorithm for this learning problem, and we derive a tight bound on

its worst-case approximation ratio. Experiments show that the greedy parameter

sets found by this approximation algorithm, using Facet, TCS, MOS, PredSP, or

GUIDANCE as the advisor’s accuracy estimator, outperform optimal oracle sets at all

cardinalities. Furthermore, on the training data, for some estimators these subopti-

mal greedy sets perform surprisingly close to optimal exact sets found by exhaustive

search. Moreover, these greedy sets actually generalize better than exact sets. As

a consequence, on testing data, for some estimators the greedy sets output by the

approximation algorithm can actually give superior performance to exact sets for

parameter advising.

5.2 Constructing optimal advisors by integer linear programming

We now show how to construct optimal advisors by integer linear programming.

Recall that an integer linear program (ILP) is an optimization problem with a col-

lection of integer-valued variables, an objective function to optimize that is linear

in these variables, and constraints that are linear inequalities in the variables. Our

formulations of Advisor Coefficients and Optimal Advisor are actually so-called

mixed-integer programs, where some of the variables are real-valued, while Advisor

Set has all integer variables.

The integer linear programming formulations we give below actually model a

more general version of the advising problems. The advising problems in Section 4.2

define the advisor A so that it carefully resolves ties among the parameter choices

that achieve the optimum value of the estimator, by picking from this tied set the

parameter choice that has lowest true accuracy. (This finds a solution that has the

best possible average accuracy, even in the worst case.) We extend the definition

76

of advisor A to now pick from a larger set of near-optimal parameter choices with

respect to the estimator. To make this precise, for benchmark i, set P of parameter

choices, and a real-value δ ≥ 0, let

Mδ(i) :=
{
j ∈ P : c · Fij ≥ max

k∈P

{
c · Fik

}
− δ

}
.

Set Mδ(i) is the near-optimal parameter choices that are within δ of maximiz-

ing the estimator for benchmark i. (So Mδ(i) ⊇ argmaxj∈P{c · Fij}, with equality

when δ = 0.) We then extend the definition of the advisor A in equation (4.4)

for δ≥0 to

A(i) ∈ argmin
{
aij : j ∈ Mδ(i)

}
. (5.1)

At δ=0, this coincides with the original problem definitions. The extension to δ>0

is designed to boost the generalization of optimal solutions (in other words, to find a

solution that is not over fit to the training data) when we do cross-validation exper-

iments on independent training and test sets as in Chapter 6. We give integer linear

programming formulations for this extended definition of our advising problems.

5.2.1 Modeling the Advisor Set Problem

The integer linear program (ILP) for Advisor Set has three classes of variables,

which all take on binary values {0, 1}. Variables xij, for all benchmarks i and all

parameter choices j from the universe, encode the advisor A: xij =1 if the advisor

uses choice j on benchmark i; otherwise, xij = 0. Variables yj, for all parameter

choices j from the universe, encode the set P that is found by Advisor Set: yj = 1

iff j ∈ P . Variables zij, for all benchmarks i and parameter choices j, encode the

parameter choice in P with highest estimator value for benchmark i: if zij =1 then

j ∈ argmaxk∈P c · Fik. This argmax set may contain several choices j, and in this

situation the ILP given below arbitrarily selects one such choice j for which zij =1.

For convenience, the description of the ILP below also refers to the new con-

stants eij, which are the estimator values of the alternate alignments Aij: for the

fixed estimator c for Advisor Set, eij = c · Fij.

77

The objective function for the ILP is to maximize∑
i

wi
∑
j

aij xij. (5.2)

In this function, the inner sum
∑

j aij xij will be equal to ai,A(i), as the xij will

capture the (unique) parameter choice that advisor A makes for benchmark i. This

objective is linear in the variables xij.

The constraints for the ILP fall into three classes. The first class ensures that

variables yj encode set P , and variables xij encode an assignment to benchmarks

from P . The ILP has constraints ∑
j

yj ≤ k, (5.3)∑
j

xij = 1, (5.4)

xij ≤ yj, (5.5)

where equation (5.4) occurs for all benchmarks i, and inequality (5.5) occurs for all

benchmarks i and all parameter choices j.

In the above, inequality (5.3) enforces |P |≤k. Equations (5.4) force the advisor

to select one parameter choice for every benchmark. Inequalities (5.5) enforce that

the advisor’s selections must be parameter choices that are available in P .

The second class of constraints ensure that variables zij encode a parameter

choice from P with highest estimator value. To enforce that the zij encode an

assignment to benchmarks from P ,∑
j

zij = 1, (5.6)

zij ≤ yj, (5.7)

where equation (5.6) occurs for all i, and inequality (5.7) occurs for all i and j. (In

general, the zij will differ from the xij, as the advisor does not necessarily select

the parameter choice with highest estimator value.) For all benchmarks i, and all

parameter choices j and k from the universe with eik < eij, we have the inequality

zik + yj ≤ 1. (5.8)

78

Inequalities (5.8) ensure that if a parameter choice k is identified as having the

highest estimator value for benchmark i by zik = 1, there must not be any other

parameter choice j in P that has higher estimator value on i. Note that the con-

stants eij are known in advance, so inequalities (5.8) can be enumerated by sorting

all j by their estimator value eij, and collecting the ordered pairs (k, j) from this

sorted list.

The third class of constraints ensure that the parameter choices xij selected by

the advisor correspond to the definition in equation (5.1): namely, among the pa-

rameter choices in P that are within δ of the highest estimator value from P for

benchmark i, the parameter choice of lowest accuracy is selected. For all bench-

marks i, all parameter choices j, and all parameters choices k and h with both

eik, eih ∈ [eij−δ, eij] and aih < aik, we have the inequality

xik + yh + zij ≤ 2. (5.9)

Inequalities (5.9) ensure that for the parameter choices that are within δ of the

highest estimator value for benchmark i, the advisor only selects parameter choice k

for i if k is within δ of the highest and there is no other parameter choice available

in P within δ of the highest that has lower accuracy. Finally, for all benchmarks i

and all parameter choices j and k with eik < eij−δ, we have the inequality

xik + yj ≤ 1. (5.10)

Inequalities (5.10) enforce that the advisor cannot select parameter choice k for i

if the estimator value for k is below δ of an available parameter choice in P . (In-

equalities (5.9) capture the requirements on parameter choices that are within δ of

the highest, while inequalities (5.10) capture the requirements on parameter choices

that are below δ of the highest.)

A truly remarkable aspect of this formulation is that the ILP is able to capture

all the subtle conditions the advisor must satisfy through its static set of inequali-

ties (listed at “compile time”), without knowing when the ILP is written what the

optimal set P is, and hence without knowing what parameter choices in P have the

highest estimator value for each benchmark.

79

To summarize, the ILP for Advisor Set has binary variables xij, yj, and zij, and

inequalities (5.3) through (5.10). For n benchmarks and a universe of m parameter

choices, this is O(mn) variables, and O(m2n + mm̃2n) constraints, where m̃ is the

maximum number of parameter choices that are within δ in estimator value of any

given parameter choice. For small δ, typically m̃� m, which leads to O(m2n) con-

straints in practice. In the worst-case, though, the ILP has Θ(m3n) constraints.

We also have an alternate ILP formulation that adds O(n) real-valued variables

to capture the highest estimator value from P for each benchmark i, and only has

O(m2n) total constraints (so fewer constraints than the above ILP in the worst case),

but its objective function is more involved, and attempts to solve the alternate ILP

suffered from numerical issues.

5.2.2 Finding optimal Oracle Sets

While we would like to find advisor sets that are optimal for the actual accuracy

estimator used by an advisor, in practice finding such optimal set seems very hard.

We can, however, in practice find optimal advisor sets that are estimator oblivious,

in the sense that the set-finding algorithm is unaware of the mistakes made by the

advisor due to using an accuracy estimator rather than knowing true accuracy. More

precisely, we can find an optimal advisor set for an advisor whose “estimator” is the

true accuracy of an alignment. As mentioned previously, we call such an advisor an

oracle.

To find an optimal oracle set, we use the same objective function described in

equation 5.2, and equations 5.3-5.5 to make sure an alignment is only selected if the

parameter that is used to generate it is chosen. Solving the ILP with only these

constraints will yield an optimal advisor set for the oracle advisor. Note that ties

in accuracy do not need to be resolved, as any alignment with a tied “estimator”

value also has a tied accuracy value, and thus would not effect the objective value.

With the reduced number of variables and constraints in this modified ILPm we

are able to find optimal oracle sets in practice even for large set cardinalities.

80

5.2.3 Modeling the Advisor Estimator Problem

We now describe how to modify the above ILP for Advisor Set to obtain an ILP for

Advisor Coefficients. The modifications must address two issues: (a) the set P is now

fixed; and (b) the estimator c is no longer fixed, so the enumeration of inequalities

cannot exploit concrete estimator values. We can easily handle that set P is now

part of the input by approriately fixing the variables yj with new equations: for

all j∈P add equation yj =1, and for all j 6∈P add yj =0.

To find the optimal estimator c, we add ` new real-valued variables c1, . . . , c` with

the constraints
∑

h ch = 1 and ch≥0. We also add two new classes of binary-valued

integer variables: (a) variable sij, for all benchmarks i and all parameter choices j,

which has value 1 when the estimator value of parameter choice j on benchmark i,

namely c · Fij, is within δ of the highest estimator value for i; and (b) variable tijk,

for all benchmarks i and all parameter choices j and k, which has value 1 when

c · Fij > c · Fik − δ.
To set the values of the binary variables tijk, for all i, j, k we add the inequalities

tijk ≥ c · Fij − c · Fik + δ. (5.11)

This inequality is linear in the variables c1, . . . , c`. Note that the value of the es-

timator c · Fij will always be in the range [0, 1], and we are assuming that the

constant δ � 1. To set the values of the binary variables sij, for all i, j, k we add

the inequalities

sij ≥ tijk + tikj + zik − 2. (5.12)

While the ILP only has to capture relationships between parameter choices that

are in set P , we do not constrain the variables sij and tijk for parameter choices

outside P to be 0, but allow the ILP to set them to 1 if needed for a feasible solution.

We now use the variables sij and tijk to express the relationships in the for-

mer inequalities (5.8) through (5.10). We replace inequality (5.8) by the following

inequality over all i, j, k,

zij + yk ≤ 2 −
(
c · Fik − c · Fij

)
. (5.13)

81

We replace inequality (5.9) by the following inequality over all i, j, k with aik < aij,

xij + yk + sij + sik ≤ 3. (5.14)

Finally, we replace inequality (5.10) by the following inequality over all i, j, k,

xij + yk ≤ 2 −
(
c · Fik − c · Fij − δ

)
. (5.15)

To summarize, the ILP for Advisor Coefficients has binary variables xij, yj, zij,

sij, tijk, real variables ch, constraints (5.6)–(5.7) and (5.11)–(5.15), plus the elemen-

tary constraints on the yj and ch. This is O(m2n) variables and O(m2n) constraints.

While in general this is an enormous mixed-integer linear program, we are able to

solve it to optimality for small, fixed sets P . Its difficulty increases with the size

of P , and instances up to |P |≤4 can be solved in two days of computation.

5.2.4 Modeling the Optimal Advisor Problem

The ILP for Optimal Advisor is simply the above ILP for Advisor Coefficients where

set P coincides with the entire universe of parameter choices: P = {1, . . . ,m}.
Solving this ILP is currently beyond reach.

While very large integer linear programs can be solved to optimality in practice

using modern solvers such as CPLEX (IBM Corporation, 2015) there is no known

algorithm for integer linear programming that is efficient in the worst-case. Thus

our reductions of the optimal advising problems to integer linear programming do

not yield algorithms for these problems that are guaranteed to be efficient. On

the other hand, Section 4.3 shows that our optimal advising problems are all NP-

complete, so it is unlikely that any worst-case efficient algorithm for them exists.

5.3 Approximation algorithm for learning advisor sets

As Advisor Set is NP-complete, it is unlikely we can efficiently find advisor sets

that are optimal ; we can, however, efficiently find advisor sets that are guaranteed

to be close to optimal, in the following sense. An α-approximation algorithm for a

82

maximization problem, where α < 1, is a polynomial-time algorithm that finds a

feasible solution whose value under the objective function is at least factor α times

the value of an optimal solution. Factor α is called the approximation ratio. In this

section we show that for any constant ` with ` ≤ k, there is a simple approximation

algorithm for Advisor Set that achieves approximation ratio `/k.

For constant `, the optimal advisor set of cardinality at most ` can be found

in polynomial time by exhaustive search (since when ` is a constant there are

polynomially-many subsets of size at most `). The following natural approach to

Advisor Set builds on this idea, by starting with an optimal advisor set of size at

most `, and greedily augmenting it to one of size at most k. Since augmenting an

advisor set by adding a parameter choice can worsen its value under the objective

function, even if augmented in the best possible way, the procedure Greedy given

below outputs the best advisor set found across all cardinalities.

procedure Greedy(`, k) begin

Find an optimal subset P ⊆ U of size |P | ≤ ` that maximizes f(P).(
P̃ , ˜̀) :=

(
P,
∣∣P ∣∣)

for cardinalities ˜̀+1, . . . , k do begin

Find parameter choice j∗ ∈ U−P̃ that maximizes f
(
P̃ ∪ {j∗}

)
.

P̃ := P̃ ∪ {j∗}

if f
(
P̃
)
> f(P) then P := P̃

end

output P

end

We now show this natural greedy procedure is an approximation algorithm for

Advisor Set.

Theorem 6 (Approximation Ratio) Procedure Greedy is an (`/k)-

approximation algorithm for Advisor Set with cardinality bound k, and any

constant ` with ` ≤ k.

83

Proof The basic idea of the proof is to use averaging over all subsets of size `

from the optimal advisor set of size at most k, in order to relate the objective

function value of the set found by Greedy to the optimal solution.

To prove the approximation ratio, let

• P ∗ be the optimal advisor set of size at most k,

• P̃ be the optimal advisor set of size at most `,

• P be the advisor set output by Greedy,

• S be the set of all subsets of P ∗ that have size `,

• k̃ be the size of P ∗, and

• ˜̀be the size of P̃ .

Note that if k̃ < `, then the greedy advisor set P is actually optimal and the

approximation ratio holds. So assume k̃ ≥ `, in which case S is nonempty. Then

f(P) ≥ f(P̃)

≥ max
Q∈S

f(Q) (5.16)

≥ 1

|S|
∑
Q∈S

f(Q)

=
1

|S|
∑
Q∈S

∑
i

wiAi(Q)

=
1

|S|
∑
Q∈S

∑
i

∑
j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣ , (5.17)

where inequality (5.16) holds because P̃ is an optimal set of size at most ` and

each Q is a set of size `, while equation (5.17) just changes the order of summation

on i and j.

Note that for any subset Q ⊆ P ∗ and any fixed parameter choice j ∈ Q, the

following relationship on sets of benchmarks holds:{
i : j ∈ Oi(P ∗)

}
⊆

{
i : j ∈ Oi(Q)

}
, (5.18)

84

since if choice j is within tolerance ε of the highest estimator value for P ∗, then j is

within ε of the highest value for Q.

Continuing from equation (5.17), applying relationship (5.18) to index i of the in-

nermost sum and observing that the terms lost are nonnegative, yields the following

inequality (5.19):

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P ∗)

wi aij∣∣Oi(Q)
∣∣ . (5.19)

Now define, for each benchmark i, a parameter choice J(i) from P ∗ of highest

estimator value,

J(i) ∈ argmax
j ∈P ∗

{
E(Aij)

}
,

where ties in the maximum estimator value are broken arbitrarily. Observe that

when J(i) ∈ Q, the relationship Oi(Q) ⊆ Oi(P ∗) holds, since then both Q and P ∗

have the same highest estimator value (and Q ⊆ P ∗). Thus when J(i) ∈ Q,∣∣Oi(Q)
∣∣ ≤ ∣∣Oi(P ∗)∣∣ . (5.20)

Returning to inequality (5.19), and applying relationship (5.20) in inequal-

85

ity (5.21) below,

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P ∗)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
i

∑
Q∈S

∑
j ∈Oi(P ∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P ∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P ∗)

wi aij∣∣Oi(P ∗)∣∣ (5.21)

=
1

|S|
∑
i

∣∣∣{Q∈S : J(i)∈Q
}∣∣∣ ∑

j ∈Oi(P ∗)

wi aij∣∣Oi(P ∗)∣∣
=

(
k̃− 1
`− 1

)
(
k̃
`

) ∑
i

∑
j ∈Oi(P ∗)

wi aij∣∣Oi(P ∗)∣∣
=

(
`
/
k̃
)
f(P ∗)

≥
(
`
/
k
)
f(P ∗) .

Thus Greedy achieves approximation ratio at least `/k.

Finally, to bound the running time of Greedy, consider an input instance with

d features, n benchmarks, and m parameter choices in universe U . There are at

most m` subsets of U of size at most `, and evaluating objective function f on such

a subset takes O(d`n) time, so finding the optimal subset of size at most ` in the

first step of Greedy takes O(d`nm`) time. The remaining for-loop considers at most

k cardinalities, at most m parameter choices for each cardinality, and evaluates the

objective function for each parameter choice on a subset of size at most k, which

takes O(dk2mn) time. Thus the total time for Greedy is O(d`nm` + dk2mn). For

constant `, this is polynomial time. 2

In practice, we can compute optimal advisor sets of size up to ` = 5 by exhaustive

enumeration, as shown in Section 6.5.1. Finding an optimal advisor set of size k =

10, however, is currently far out of reach. Nevertheless, Theorem 6 shows we can

86

still find reasonable approximations even for such large advisor sets, since for ` = 5

and k = 10, Greedy is a (1/2)-approximation algorithm.

We next show it is not possible to prove a greater approximation ratio than in

Theorem 6, as that ratio is in fact tight.

Theorem 7 (Tightness of Approximation Ratio) The approximation ra-

tio `/k for algorithm Greedy is tight.

Proof Since the ratio is obviously tight for ` = k, assume ` < k. For any

arbitrary constant 0 < δ < 1−(`/k), and for any error tolerance 0 ≤ ε < 1, consider

the following infinite class of instances of Advisor Set with:

• benchmarks 1, 2, . . . , n,

• benchmark weights wi = 1/n,

• cardinality bound k = n, and

• universe U = {0, 1, . . . , n} of n+1 parameter choices.

The estimator values for all benchmarks i are,

E(Aij) =


1, j = 0;

(1−ε)/2, i = j > 0;

0, otherwise;

which can be achieved by appropriate feature vectors Fij. The alternate alignment

accuracies for all benchmarks i are,

aij =


(`/k) + δ, j = 0;

1, i = j > 0;

0, otherwise.

For such an instance of Advisor Set, an optimal set of size at most k is

P ∗ = {1, . . . , n}, which achieves f(P ∗) = 1. Every optimal set P̃ of size at most

` < k satisfies P̃ ⊇ {0}: it cannot include all of parameter choices 1, 2, . . . , n, so to

avoid getting accuracy 0 on a benchmark it must contain parameter choice j = 0.

87

Moreover, every such set P̃ ⊇ {0} has average accuracy f
(
P̃
)

= (`/k) + δ: param-

eter choice j = 0 has the maximum estimator value 1 on every benchmark, and

no other parameter choice j 6= 0 has estimator value within ε of the maximum, so

on every benchmark Ai
(
P̃
)

= (`/k) + δ. Furthermore, every greedy augmentation

P ⊇ P̃ also has this same average accuracy f(P) = f
(
P̃
)
. Thus on this instance

the advisor set P output by Greedy has approximation ratio exactly

f(P)

f(P ∗)
=

`

k
+ δ .

Now suppose the approximation ratio from Theorem 6 is not tight, in other

words, that an even better approximation ratio α > `/k holds. Then take δ =(
α− (`/k)

)
/2, and run Greedy on the above input instance. On this instance,

Greedy only achieves ratio

`

k
+ δ =

1

2

(
`

k
+ α

)
< α ,

a contradiction. So the approximation ratio is tight. 2

Summary

In this chapter, we have described an ILP for finding optimal advisor sets, and more

general for finding an optimal advisor. As this ILP is not solvable in practice we fur-

ther developed efficient approximation algorithm for finding estimator-aware advisor

sets. In practice, we can find optimal oracle by solving a reduced ILP. Experiments

with an implementation of the approximation algorithm on biological benchmarks,

using various accuracy estimators from the literature, which are shown in Chapter 6,

show it finds advisor sets that are surprisingly close to optimal. Furthermore, the

resulting parameter advisors are significantly more accurate in practice than simply

aligning with a single default parameter choice.

88

CHAPTER 6

Parameter Advising for Opal

Overview

In Chapters 1-5, we have described several approaches to constructing a parameter

advisor. In this chapter, we demonstrate the performance of the trained advisor as

learned on a set of benchmark alignments. We will also show the advisors perfor-

mance compared to both the default parameter choice, as well as advisors learned

on various accuracy estimators. We show Facet gives the best advising accuracy

of any estimator currently available, and that by using estimator-aware advisor sets

we can significantly increase the accuracy of the advisor over using oracle sets.

This chapter was adapted from portions of previous publications (DeBlasio et al.,

2012b; Kececioglu and DeBlasio, 2013; DeBlasio and Kececioglu, 2014a, 2015).

6.1 Introduction

In characterizing six stages in constructing a multiple sequence alignment, Wheeler

and Kececioglu (2007) gave as the first stage choosing the parameter values for the

alignment scoring function. While many alignment tools allow the user to spec-

ify scoring function parameter values, such as affine gap penalties or substitution

scoring matrices, typically only the default parameter values that the aligner pro-

vides are used. This default parameter choice is often tuned to optimize the average

accuracy of the aligner over a collection of alignment benchmarks. While the de-

fault parameter values might be the single choice that works best on average on the

benchmarks, for specific input sequences there may be a different choice on which

the aligner outputs a much more accurate alignment.

This leads to the task of parameter advising : given particular sequences to align,

and a set of possible parameter choices, recommend a parameter choice to the aligner

89

that yields the most accurate alignment of those sequences. Parameter advising has

three components: the set S of input sequences, the set P of parameter choices,

and the aligner A. (Here a parameter choice p ∈ P is a vector p = (p1, . . . , pk) that

specifies values for all free parameters in the alignment scoring function.) Given

sequences S and parameter choice p ∈ P , we denote the alignment output by the

aligner as Ap(S). Wheeler and Kececioglu (2007) call a procedure that takes the set

of input sequences S and the set of parameter choices P , and outputs a parameter

recommendation p ∈ P , an advisor. A perfect advisor, that always recommends

the choice p∗ ∈ P that yields the highest accuracy alignment Ap∗(S), is called an

oracle. In practice, constructing an oracle is impossible, since for any real set S of

sequences that we want to align, a reference alignment for S is unknown (as otherwise

we would not need to align them), so the true accuracy of any alignment of S cannot

be determined. The concept of an oracle is useful, however, for measuring how well

an actual advisor performs.

A natural approach for constructing a parameter advisor is to use an accuracy

estimator E as a proxy for true accuracy, and recommend the parameter choice

p̃ := argmax
p∈P

E
(
Ap(S)

)
.

In its simplest realization, such an advisor will run the aligner A repeatedly on

input S, once for each possible parameter choice p ∈ P , to select the output that

has best estimated accuracy. Of course, to yield a quality advisor, this requires two

ingredients: a good estimator E, and a good set P of parameter choices.

In Chapters 2 and 3 we presented our framework for accuracy estimation that

lead to the new accuracy estimator Facet (short for “feature-based accuracy

estimator”). Which is a linear combination of easy-to-compute feature functions

of an alignment. We then went on in Chapter 5 to present a greedy approximation

algorithm for finding advisor sets. Note that as discussed in Chapter 4, finding

optimal advisor sets is NP-complete.

Given that we have the means to compute both accuracy estimators and advisor

sets, we now apply all of this methodology to the task of parameter advising.

90

Plan of the chapter

In the next section, we describe the benchmarks that we use in all of our experiments.

Recall that in order to learn both estimators and advisor sets, we must have examples

for which we know the correct alignment and can calculate true accuracy. Section 6.3

shows examples of the estimator coefficients we learned, and compares our new

Facet estimator to other estimators from the literature. Section 6.4 describes the

differences between various methods for finding advisor sets. Section 6.5 assesses

the increase in accuracy gained from parameter advising using Facet as well as

other estimators. In addition, we show the increase in accuracy gained from using

greedy advisor sets versus optimal oracle sets. Finally, the last section describes the

software implementation of advising using Facet as a stand-alone tool, as an API,

and within the Opal aligner.

6.2 Experimental methods

We evaluate our approach for deriving an accuracy estimator, and the quality of

the resulting parameter advisor, through experiments on a collection of benchmark

protein multiple sequence alignments. In these experiments, we compare parame-

ter advisors that use our estimator and five other estimators from the literature:

COFFEE (Notredame et al., 1998), NorMD (Thompson et al., 2001), MOS (Lassmann

and Sonnhammer, 2005b), HoT (Landan and Graur, 2007), and PredSP (Ahola et al.,

2008). (In terms of our earlier categorization of estimators, COFFEE, NorMD and

PredSP are scoring-function-based, while MOS and HoT are support-based.) Other

estimators from the literature that are not in this comparison group are: AL2CO (Pei

and Grishin, 2001), which is known to be dominated by NorMD (see Lassmann and

Sonnhammer, 2005b) GUIDANCE (Penn et al., 2010), which requires at least four

sequences, and hence is not applicable to a large portion of the most challenging

benchmarks in our study, as many hardest-to-align instances involve three very dis-

tant sequences; and PSAR (Kim and Ma, 2011), which at present is only implemented

for DNA sequence alignments.

91

We refer to our estimator in the figures that follow by the acronym Facet, which

is short for “feature-based accuracy estimator.”

In our experiments, for the collection of alignment benchmarks we used the

BENCH suite of Edgar (2009), which consists of 759 benchmarks, supplemented by

a selection of 102 benchmarks from the PALI suite of Balaji et al. (2001). (BENCH

itself is a selection of 759 benchmarks from (Bahr et al., 2001), OxBench (Raghava

et al., 2003), and SABRE (Van Walle et al., 2005).) Both BENCH and PALI consist

of protein multiple sequence alignments mainly induced by structural alignment

of the known three-dimensional structures of the proteins. The entire benchmark

collection consists of 861 reference alignments.

For the experiments, we measure the difficulty of a benchmark S by the true

accuracy of the alignment computed by the multiple alignment tool Opal (Wheeler

and Kececioglu, 2007, 2012) on sequences S using its default parameter choice,

where the computed alignment is compared to the benchmark’s reference alignment

on its core columns. Using this measure, we binned the 861 benchmarks by dif-

ficulty, where we divided up the full range [0, 1] of accuracies into 10 bins with

difficulties [(i − 1)/10, i/10] for i = 1, . . . , 10. As is common in benchmark suites,

easy benchmarks are highly over-represented compared to hard benchmarks. The

number of benchmarks falling in bins [0.0, 0.1] through [0.9, 1.0] are listed below.

bin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

benchmarks 12 12 20 34 26 50 61 74 137 434

To correct for this bias in oversampling of easy benchmarks, our approaches for

learning an estimator nonuniformly weight the training examples, as described ear-

lier.

Notice that with this uniform weighting of bins, the singleton advising set P

containing only the optimal default parameter choice will tend to an average advising

accuracy f(P) of 50% (illustrated later in Figures 6.2 and 6.3). This establishes, as

a point of reference, average accuracy 50% as the baseline against which to compare

advising performance.

92

Note that if we instead measure advising accuracy by uniformly averaging over

benchmarks, then the predominance of easy benchmarks (for which little improve-

ment is possible over the default parameter choice) makes both good and bad ad-

visors tend to an average accuracy of nearly 100%. By uniformly averaging over

bins, we can discriminate among advisors, though the average advising accuracies

we report are now pulled down from 100% toward 50%.

For each reference alignment in our benchmark collection, we generated alternate

multiple alignments of the sequences in the reference using Opal with varying pa-

rameter choices. Opal constructs multiple sequence alignments using as a building

block the exact algorithm of Kececioglu and Starrett (2004) for optimally align-

ing two multiple alignments under the sum-of-pairs scoring function (Carrillo and

Lipman, 1988) with affine gap penalties (Gotoh, 1982). Since Opal computes sub-

alignments that are optimal with respect to a well-defined scoring function, it is an

ideal testbed for evaluating parameter choices, and in particular parameter advising.

Each parameter choice for Opal is a five-tuple (σ, γI , γE, λI , λE) of parameter values,

where σ specifies the amino acid substitution scoring matrix, pair γE, λE specifies

the gap-open and gap-extension penalties for external gaps in the alignment (also

called terminal gaps), and γI , λI specifies the gap penalties for internal gaps (or

non-terminal gaps).

The universe U of parameter choices we consider in our experiments consists of

over 2,000 such tuples (σ, γI , γE, λI , λE). Universe U was generated as follows. For

the substitution matrix σ, we considered matrices from the BLOSUM (Henikoff and

Henikoff, 1992) and VTML (Müller et al., 2002) families. To accommodate a range of

protein sequence divergences, we considered the following matrices from these fam-

ilies: {BLSM45, BLSM62, BLSM80} and {VTML20, VTML40, VTML80, VTML120, VTML200}.
For each of these eight matrices, we took the real-valued version of the similarity

matrix and transformed it into a substitution cost matrix for Opal by negating,

shifting, and scaling it to the range [0, 100], and then rounding its entries to the

nearest integer. For the gap penalties, we started from the default parameter set-

ting for Opal (see Wheeler and Kececioglu, 2007), which is an optimal choice of

93

gap penalties for the BLSM62 matrix found by inverse parametric alignment (See

Kececioglu and Kim, 2006; Kim and Kececioglu, 2008.) Around these default values

we enumerated a Cartesian product of integer choices in the neighborhood of this

central choice, generating over 2,100 four-tuples of gap penalties. The resulting set

of roughly 16,900 parameter choices (each substitution matrix combined with each

gap penalty assignment) was then reduced by examining the benchmarks in our

collection as follows. In each hardness bin of benchmarks, we: (1) ran Opal with all

of these parameter choices on the benchmarks in the bin, (2) for a given parameter

choice measured the average accuracy of the alignments computed by Opal using

that parameter choice on the bin, (3) sorted the parameter choices for a bin by their

average accuracy, and (4) in each bin kept the top 25 choices with highest aver-

age accuracy. Unioning these top choices from all 10 hardness bins, and removing

duplicates, gave our final set U . This universe U has 243 parameter choices.

To generate training and testing sets for our experiments on learning advisor sets,

we used 12-fold cross validation. For each hardness bin, we evenly and randomly

partitioned the benchmarks in the bin into twelve groups; we then formed twelve

splits of the entire collection of benchmarks into a training class and a testing class,

where each split placed one group in a bin into the testing class and the other eleven

groups in the bin into the training class; finally, for each split we generated a training

set and a testing set of example alignments as follows: for each benchmark B in

a training or testing class, we generated |U | example alignments in the respective

training or testing set by running Opal on B with each parameter choice from U . An

estimator learned on the examples from a training set was evaluated on examples

from the corresponding testing set. The results we report are averages over twelve

folds, where each fold is one of these pairs of associated training and testing sets.

(Note that across the twelve folds, every example is tested on exactly once.) Each

fold contains over 190,000 training examples.

When evaluating the GUIDANCE estimator, we used 4-fold cross validation on the

reduced benchmark collection described earlier, with folds generated by the above

procedure. Each of these folds has over 109,000 training examples.

94

6.3 Comparison of advisor estimators

To learn an estimator using the methods described in chapterch:estimator we must

be given a set of alternate alignments produced by an aligner and their associated

accuracy values. We use a set of alignment benchmarks that is a combination of

the BENCH benchmark suite of Edgar (2009) supplemented with a subset of the PALI

benchmark suite (Balaji et al., 2001). In total the benchmark set consisted of 861

benchmark alignments, for which we knew the correct alignment. We then computed

an alignment for each of them using the Opal aligner using each of 16,896 parameter

settings.

6.3.1 Finding an estimator

We found coefficients for the estimator using the difference-fitting method described

in Section 2.3.2. We used only threshold-difference pairs with ε = 5%, for all 16,896

realignments of each benchmark. Note that here we found an estimator that is

learned for pairs from all 861 benchmarks. When we use an estimator for experi-

ments involving parameter advising, we use cross-validation to train new estimator

coefficients for each fold, so as to not test on benchmarks that were used for training

the estimator or advisor sets .

Of the features listed in Section 3.2, not all are equally informative, and some can

weaken an estimator. When coefficients are found by solving the linear programs

described in Chapter 2 on a set of example alignments some of the coefficients of

the estimator will be zero. The best overall feature set found by this process is a

6-feature subset consisting of the following feature functions:

• Secondary Structure Agreement, fSA,

• Secondary Structure Blockiness, fBL,

• Secondary Structure Identity, fSI,

• Gap Open Density, fGO,

• Amino Acid Identity, fAI, and

• Core Column Percentage, fCC.

95

The corresponding fitted estimator is

E(A) = 0.239 fSA(A) + 0.141 fBL(A) + 0.040 fSI(A) +

0.465 fGO(A) + 0.204 fAI(A) + 0.003 fCC(A),

Figure 3.1 shows a scatter plot of the five strongest features from the estimator.

Notice that the feature with the highest coefficient value also has the smallest range.

6.3.2 Comparing estimators to true accuracy

To examine the fit of an estimator to true accuracy, the scatter plots in Figure 6.1

show the value of an estimator versus true accuracy on all example alignments in the

15-parameter test set. (This set has over 12,900 test examples. Note that these test

examples are disjoint from the training examples used to fit our estimator.) The

scatter plots show our Facet estimator as well as the PredSP, MOS, COFFEE, HoT,

and NorMD estimators. We note that the MOS estimator, in distinction to the other

estimators, receives as input all the alternate alignments of an example’s sequences

generated by the 15 parameter choices, which is much more information than is

provided to the other estimators, which are only given the one example alignment.

An ideal estimator would be monotonic increasing in true accuracy. A real

estimator approaches this ideal according to its slope and spread. To discriminate

between low and high accuracy alignments for parameter advising, an estimator

needs large slope with small spread. Comparing the scatter plots by spread, Facet

and PredSP have the smallest spread; MOS and COFFEE have intermediate spread;

and HoT and NorMD have the largest spread. Comparing by slope, PredSP and NorMD

have the smallest slope; Facet and HoT have intermediate slope; and MOS and COFFEE

have the largest slope. While PredSP has small spread, it also has small slope, which

weakens its discriminative power. While MOS and COFFEE have large slope, they also

have significant spread, weakening their discrimination. Finally HoT and NorMD have

too large a spread to discriminate. Of all these estimators, Facet seems to achieve

96

the best compromise of slope and spread, for a tighter monotonic trend across all

accuracies. This better compromise between slope and spread may be what leads

to improved performance for Facet on parameter advising, as demonstrated later

in this section.

Our estimator combines six features to obtain its estimate. To give a sense

of how these features behave, Figure 3.1 shows scatter plots of all of the feature

functions’ correlation with true accuracy (many which all use secondary structure).

As noted in Section 6.3.1 the feature functions that we use for the Facet estimator

are: Secondary Structure Agreement, Amino Acid Identity, Secondary Structure

Blockiness, Secondary Structure Identity, and Core Column Percentage. Notice

that the combined six-feature Facet estimator, shown in Figure 6.1, has smaller

spread than any one of its individual features.

6.4 Comparison of advisor sets

Table 6.1 lists the parameter choices in the advisor sets found by the greedy approxi-

mation algorithm (augmenting from the optimal set of cardinality `=1) for the Opal

aligner with the Facet estimator for cardinalities k ≤ 20, on one fold of training

data. (The greedy sets vary slightly across folds.) In the table, the greedy set of

cardinality k contains the parameter choices at rows 1 through k. (The entry at

row 1 is the optimal default parameter choice.) Again a parameter choice is five-tuple

(σ, γI , γE, λI , λE), where γI and γE are gap-open penalties for non-terminal and ter-

minal gaps respectively, and λI and λE are corresponding gap-extension penalties.

The scores in the substitution matrix σ are dissimilarity values scaled to integers in

the range [0, 100]. (The associated gap penalty values in a parameter choice relate

to this range.) The accuracy column gives the average advising accuracy (in Opal

using Facet) of the greedy set of cardinality k on training data, uniformly aver-

aged over benchmark bins. Recall this averaging will tend to yield accuracies close

to 50%.

Interestingly, while BLOSUM62 Henikoff and Henikoff (1992) is the substitution

97

True Accuracy
0 0.2 0.4 0.6 0.8 1

F
a

c
e

t
V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

P
re

d
S

P
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

M
O

S
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

T
C

S
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

H
o

T
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

N
o

rm
D

 V
a
lu

e

0

0.2

0.4

0.6

0.8

1

Figure 6.1: Correlation of estimators with accuracy. Each scatter plot shows
the value of an estimator versus true accuracy for alignments of the 861 benchmarks
used for testing aligned with the default parameter settings for the Opal aligner.

98

Table 6.1: Greedy Advisor Sets for Opal Using Facet

Cardinality Parameter choice Average
k (σ, γI , γE , λI , λE) advising accuracy

1
(
VTML200, 50, 17, 41, 40

)
51.2%

2
(
VTML200, 55, 30, 45, 42

)
53.4%

3
(
BLSUM80, 60, 26, 43, 43

)
54.5%

4
(
VTML200, 60, 15, 41, 40

)
55.2%

5
(
VTML200, 55, 30, 41, 40

)
55.6%

6
(
BLSUM45, 65, 3, 44, 43

)
56.1%

7
(
VTML120, 50, 12, 42, 39

)
56.3%

8
(
BLSUM45, 65, 35, 44, 44

)
56.5%

9
(
VTML200, 45, 6, 41, 40

)
56.6%

10
(
VTML120, 55, 8, 40, 37

)
56.7%

11
(
BLSUM62, 80, 51, 43, 43

)
56.8%

12
(
VTML120, 50, 2, 45, 44

)
56.9%

13
(
VTML200, 45, 6, 40, 40

)
57.0%

14
(
VTML40, 50, 2, 40, 40

)
57.1%

15
(
VTML200, 50, 12, 43, 40

)
57.2%

16
(
VTML200, 45, 11, 42, 40

)
57.3%

17
(
VTML120, 60, 9, 40, 39

)
57.3%

18
(
VTML40, 50, 17, 40, 38

)
57.4%

19
(
BLSUM80, 70, 17, 42, 41

)
57.4%

20
(
BLSUM80, 60, 3, 42, 42

)
57.6%

scoring matrix most commonly used by standard aligners, it does not appear in a

greedy set until cardinality k = 11. The VTML family Müller et al. (2002) appears

more often than BLOSUM. The plateau in advising accuracy seen in earlier plots is also

indicated in this training instance, though ever more gradual improvement remains

as cardinality k increases.

6.4.1 Shared structure across advisor sets

To assess the similarity of advisor sets found by the three approaches considered

in our experiments — greedy sets via the approximation algorithm, exact sets via

exhaustive search, and oracle sets via integer linear programming — we examine

their overlap both within and between folds.

Table 6.2 shows the composition of the greedy, exact, and oracle sets for the

training instance in one fold, at cardinality k = 2, 3, 4 and tolerance ε= 0. A non-

99

Table 6.2: Composition of Advisor Sets at Different Cardinalities k

Parameter choice Advisor set
(σ, γI , γE , λI , λE) Default Greedy Exact Oracle

k = 2(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(2) (3) (1)(
BLSUM80, 60, 9, 43, 42

)
(2)(

BLSUM45, 65, 35, 44, 44
)

(3)

k = 3(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (5) (1)(
BLSUM80, 60, 26, 43, 43

)
(2) (2)(

VTML200, 55, 30, 41, 40
)

(6)(
VTML40, 45, 29, 40, 39

)
(7)(

BLSUM62, 65, 16, 44, 42
)

(8)

k = 4(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (9) (6)(
BLSUM80, 60, 26, 43, 43

)
(2)(

VTML200, 60, 15, 41, 40
)

(1)(
VTML200, 45, 6, 40, 40

)
(8) (1)(

VTML200, 55, 30, 41, 40
)

(8)(
BLSUM80, 55, 19, 43, 42

)
(1)(

VTML40, 45, 29, 40, 39
)

(4)(
BLSUM62, 65, 35, 44, 42

)
(3)

Table 6.3: Number of Folds Where Greedy and Exact Sets Share Pa-
rameters

Intersection Advisor set cardinality
cardinality k = 2 k = 3 k = 4 k = 5

0 9 4 3 2
1 3 5 6 5
2 0 3 3 4
3 0 0 1
4 0 0
5 0

100

blank entry in the table indicates that the parameter choice at its row is contained in

the advisor set at its column. (The column labeled “default” indicates the optimal

default parameter choice for the fold, or equivalently, the exact set of cardinality k=

1.) The value in parentheses at an entry is the number of folds (for twelve-fold cross-

validation) where that parameter choice appears in that advisor set. (For example,

at cardinality k= 4, the second parameter choice (VTML200, 55, 30, 45, 42) is in the

greedy, exact, and oracle sets for this particular fold, and overall is in exact sets for

9 of 12 folds, including this fold.) Surprisingly, the default parameter choice (the

best single choice) never appears in the exact or oracle sets for this fold at any of

the cardinalities beyond k = 1, and also is reused as the default in only one other

fold. In general there is relatively little overlap between these advisor sets: often

just one and at most two parameter choices are shared.

Table 6.3 examines whether this trend continues at other folds, by counting

how many training instances (out of the twelve folds) share a specified number

of parameter choices between their greedy and exact sets, for a given advisor set

cardinality k. (For example, at cardinality k=4, six training instances share exactly

one parameter choice between their greedy and exact sets; in fact, the fold shown in

Table 6.2 is one such instance.) On the whole, the two “estimator-aware” advisor

sets — the greedy and exact sets — are relatively dissimilar, and never share more

than dk/2e parameter choices.

6.5 Application to parameter advising

Given the accuracy estimator learned using difference fitting that we have described

in earlier sections, and the advisor sets described in the previous section, we now

evaluate the advising accuracy of our new parameter advisor.

6.5.1 Learning advisor sets by different approaches

We first study the advising accuracy of parameter sets learned for the Facet estima-

tor by different approaches. Our protocol began by constructing an optimal oracle

101

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	
 	
 Facet	
 (Greedy,	
 ε	
 =	
 0%)	

	
 	
 Default	

	
 	
 Oracle	
 (Oracle)	

k	
 	
 	
 = 5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(12)

(12) (20)

(34)

(26)

(50)
(62)

(74)
(137)

(434)
100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	
 	
 Facet	
 (Greedy,	
 ε	
 =	
 0%)	

	
 	
 Default	

	
 	
 Oracle	
 (Oracle)	

k = 10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(434) 100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

Figure 6.2: Advising accuracy of Facet within benchmark bins. These bar
charts show the advising accuracy of various approaches to finding advisor sets, for
cardinality k = 5, 10. For each cardinality, the horizontal axis of the chart on the
left corresponds to benchmark bins, and the vertical bars show advising accuracy
averaged over the benchmarks in each bin. Black bars give the accuracy of the
optimal default parameter choice, and red bars give the accuracy of advising with
Facet using the greedy set. The dashed line shows the limiting performance of a
perfect advisor: an oracle with true accuracy as its estimator using an optimal oracle
set. In the top chart, the numbers in parentheses above the bars are the number of
benchmarks in each bin. The narrow bar charts on the right show advising accuracy
uniformly averaged over the bins.

102

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	
 	
 Facet	
 (Greedy,	
 ε	
 =	
 0%)	

	
 	
 Default	

	
 	
 Oracle	
 (Oracle)	

k = 15

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

Figure 6.3: Advising accuracy of Facet within benchmark bins. These bar
charts show the advising accuracy of various approaches to finding advisor sets, for
cardinality k = 15. For each cardinality, the horizontal axis of the chart on the
left corresponds to benchmark bins, and the vertical bars show advising accuracy
averaged over the benchmarks in each bin. Black bars give the accuracy of the
optimal default parameter choice, and red bars give the accuracy of advising with
Facet using the greedy set. The dashed line shows the limiting performance of a
perfect advisor: an oracle with true accuracy as its estimator using an optimal oracle
set. In the top chart, the numbers in parentheses above the bars are the number of
benchmarks in each bin. The narrow bar charts on the right show advising accuracy
uniformly averaged over the bins.

103

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Testing
Facet

50%

51%

52%

53%

54%

55%

56%

57%

58%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Training
Facet

Figure 6.4: Advising using exact, greedy, and oracle sets with Facet. The
plots show advising accuracy using the Facet estimator with parameter sets learned
by the optimal exact algorithm and the greedy approximation algorithm for Advisor
Set, and with oracle sets. The horizontal axis is the cardinality of the advisor set,
while the vertical axis is the advising accuracy averaged over the benchmarks. Exact
sets are known only for cardinalities k ≤ 5; greedy sets are augmented from the exact
set of cardinality ` = 1. The left and right plots show accuracy on the testing and
training data, respectively, where accuracies are averaged over all testing or training
folds.

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = .1%)
 l = 3 (ε = .75%)
 l = 4 (ε = 0%)
 l = 5 (ε = 0%)

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = 5%)
 l = 3 (ε = 5%)
 l = 4 (ε = 5%)
 l = 5 (ε = 5%)

TCS

Figure 6.5: Greedily augmenting exact advisor sets. The left and right plots
show advising accuracy using the Facet and TCS estimators respectively, with advi-
sor sets learned by procedure Greedy, which augments an exact set of cardinality `
to form a larger set of cardinality k > `. Each curve is greedily augmenting from
a different exact cardinality `. The horizontal axis is the cardinality k of the aug-
mented set; the vertical axis is advising accuracy on testing data, averaged over all
benchmarks and all folds.

104

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0% ε = 1%
 ε = 0.05% ε = 2%
 ε = 0.1% ε = 5%
 ε = 0.5% Oracle

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0%
 ε = 1%
 ε = 2%
 ε = 5%
 Oracle

TCS

Figure 6.6: Effect of error tolerance on advising accuracy using greedy
sets. The plots show advising accuracy on testing data using greedy sets learned
for the two best estimators, Facet and TCS, at various error tolerances ε≥ 0. The
plots on the left and right are for Facet and TCS, respectively. For comparison, both
plots also include a curve showing performance using the estimator on oracle sets,
drawn with a dashed line. The solid curves with circles and diamonds highlight the
best overall error tolerance of ε = 0.

set for cardinalities 1 ≤ k ≤ 20 for each training instance. A coefficient vector for

the advisor’s estimator was then found for each of these oracle sets by the difference-

fitting method described in Kececioglu and DeBlasio (2013). Using this estimator

learned for the training data, exhaustive search was done to find optimal exact advi-

sor sets for cardinalities k ≤ 5. The optimal exact set of size ` = 1 (the best default

parameter choice) was then used as the starting point to find near-optimal greedy

advisor sets by our approximation algorithm for k ≤ 20. Each of these advisors (an

advising set combined with the estimator) was then used for parameter advising

in Opal, returning the computed alignment with highest estimator value. These

set-finding approaches are compared based on the accuracy of the alignment chosen

by the advisor, averaged across bins.

Figure 6.4 shows the performance of these advisor sets under twelve-fold cross

validation. The left plot shows advising accuracy on the testing data averaged over

the folds, while the right plot shows this on the training data.

Notice that while there is a drop in accuracy when an advising set learned using

the greedy and exact methods is applied to the testing data, the drop in accuracy is

greatest for the exact sets. The value of ε shown in the plot maximizes the accuracy

105

of the resulting advisor on the testing data. Notice also that for cardinality k ≤ 5

(for which exact sets could be computed), on the testing data the greedy sets are

often performing as well as the optimal exact sets.

Figures 6.2 and 6.3 shows the performance within each benchmark bin when

advising with Facet using greedy sets of cardinality k = 5, 10, 15 (k = 5 and 10

in Figure 6.2 top and bottom respectively, k = 15 in Figure 6.3) Notice that for

many bins, the performance is close to the best-possible accuracy attainable by any

advisor, shown by the dashed line for a perfect oracle advisor. The greatest boost

over the default parameter choice is achieved on the bottom bins that contain the

hardest benchmarks.

6.5.2 Varying the exact set for the greedy algorithm

To find the appropriate cardinality ` of the initial exact solution that is augmented

within approximation algorithm Greedy, we examined the advising accuracy of the

greedy sets learned when using cardinalities 1 ≤ ` ≤ 5. Figure 6.5 shows the

accuracy of the resulting advisor using greedy sets of cardinality 1 ≤ k ≤ 20,

augmented from exact sets of cardinality 1 ≤ ` ≤ 5, using for the estimator both

Facet and TCS. (These are the two best estimators, as discussed in Section 6.5.4

below). The points plotted with circles show the accuracy of the optimal exact set

that is used within procedure Greedy for augmentation.

Notice that the initial exact set size ` has relatively little effect on the accuracy of

the resulting advisor; at most cardinalities, starting from the single best parameter

choice (` = 1) has highest advising accuracy. This is likely due to the behavior

observed earlier in Figure 6.4, namely that exact sets do not generalize as well as

greedy sets.

6.5.3 Varying the error tolerance for the greedy algorithm

When showing experimental results, an error tolerance ε has always been used that

yields the most accurate advisor on the testing data. Prior to conducting these

106

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Training

Figure 6.7: Comparing testing and training accuracies of various esti-
mators. The plots show the advising accuracies on testing and training data using
TCS, MOS, and PredSP with parameter sets learned for these estimators by the exact
and greedy algorithms for Advisor Set, and with oracle sets. From top to bottom,
the estimators used are TCS, MOS, and PredSP, with testing data plotted on the left,
and training data on the right.

107

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Training

Figure 6.8: Comparing testing and training accuracies of estimators on
benchmarks with at least four sequences. The plots show advising accuracies
for testing and training data on benchmarks with at least four sequences, using
Facet, TCS, and GUIDANCE with exact, greedy, and oracle sets.

108

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0%) MOS (ε = .1%)
 TCS (ε = 0%) PredSP (ε = .2%)

Various

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0.5%) Guidance (ε = 0.5%)
 TCS (ε = 1%) Default

Various

Figure 6.9: Comparing all estimators on greedy advisor sets. The plots
show advising accuracy on greedy sets learned for the estimators Facet, TCS, MOS,
PredSP, and GUIDANCE. The vertical axis is advising accuracy on testing data, av-
eraged over all benchmarks and all folds. The horizontal axis is the cardinality k of
the greedy advisor set. Greedy sets are augmented from the exact set of cardinal-
ity `= 1. The plot on the left uses the full benchmark suite; the plot on the right,
which includes GUIDANCE, uses a reduced suite of all benchmarks with at least four
sequences.

experiments, our expectation was that a nonzero error tolerance ε > 0 would boost

the generalization of advisor sets. Figure 6.6 shows the effect of different values of ε

on the testing accuracy of an advisor using greedy sets learned for the Facet and

TCS estimators. (While the same values of ε were tried for both estimators, raw

TCS scores are integers in the range [0, 100] which were scaled to real values in the

range [0, 1], so for TCS any ε < 0.1 is equivalent to ε = 0.) No clear relationship

between testing accuracy and error tolerance is evident, though for Facet and TCS

alike, setting ε = 0 generally gives the best overall advising accuracy.

6.5.4 Learning advisor sets for different estimators

In addition to learning advisor sets for Facet (Kececioglu and DeBlasio, 2013),

we also learned sets for the best accuracy estimators from the literature: namely,

TCS (Chang et al., 2014), MOS (Lassmann and Sonnhammer, 2005b), PredSP (Ahola

et al., 2008), and GUIDANCE (Penn et al., 2010). The scoring-function-based accuracy

estimators TCS, PredSP, and GUIDANCE do not have any dependence on the advisor

set cardinality or the training benchmarks used. The support-based estimator MOS,

however, requires a set of alternate alignments in order to compute its estimator

109

value on an alignment. In each experiment, an alignment’s MOS value was computed

using alternate alignments generated by aligning under the parameter choices in

the oracle set; if the parameter choice being tested on was in the oracle set, it was

removed from this collection of alternate alignments.

After computing the values of these estimators, exhaustive search was used to

find optimal exact sets of cardinality ` ≤ 5 for each estimator, as well as greedy sets

of cardinality k ≤ 20 (augmenting from the exact set for ` = 1).

The tendency of exact advisor sets to not generalize well is even more pronounced

when accuracy estimators other than Facet are used. Figure 6.7 shows the perfor-

mance on testing and training data of greedy, exact, and oracle advisor sets learned

for the best three other estimators: TCS, MOS, and PredSP. The results for greedy

advisor sets for TCS at cardinalities larger than 5 have similar trend to those seen

for Facet (with now a roughly 1% accuracy improvement over the oracle set), but

surprisingly with TCS its exact set always has lower testing accuracy than its greedy

set. Interestingly, for MOS its exact set rarely has better advising accuracy than the

oracle set. For PredSP, at most cardinalities (with the exception of k = 3) the exact

set has higher accuracy than the greedy set on testing data, though this is offset by

the low accuracy of the estimator.

We also tested GUIDANCE, Facet, and TCS on the reduced suite of all benchmarks

with at least four sequences (as required by GUIDANCE). Figure 6.8 shows the advising

accuracy of set-finding methods using these estimators on these benchmarks. Notice

that on this reduced suite the results generally stay the same, though for Facet there

is more of a drop in performance of the exact set from training to testing, and the

set found by Greedy generally has greater accuracy on the reduced suite than the

full suite.

Finally, a complete comparison of the advising performance of all estimators

using greedy sets is shown in Figure 6.9. (The plot on the right shows advising

accuracy on testing data for GUIDANCE, Facet, and TCS on the reduced suite of

benchmarks with at least four sequences.) Advising with each of these estimators

tends to eventually reach an accuracy plateau, though their performance is always

110

boosted by using advisor sets larger than a singleton default choice. The plateau

for Facet (the top curve in the plots) generally occurs at the greatest cardinality

and accuracy.

6.6 Software

Parameter advising in our software implementation can be performed in one of two

ways:

(1) Facet aligner wrapper – Similar to using Facet on the command line,

you can use a set of provided Perl scripts that runs PSIPRED to predict

the protein secondary structure, uses a provided set of Opal parame-

ter settings, computes alignments for each of these settings, computes

the Facet score, and identifies the highest accuracy alignment. The

script must be configured for each user’s installation location of Opal

and PSIPRED.

(2) Within Opal – The newest version of the Opal aligner can perform

parameter advising internally. The advising set is given to Opal using the

--advising configuration file command line argument. The most

accurate alignment will then be output to the file identified by the --out

argument. More details of the parameter advising modifications made to

Opal are given in Section 6.6.1.

The advising wrapper as well as oracle and greedy sets, can be found on http:

//facet.cs.arizona.edu.

6.6.1 Opal version 3

We have updated the Opal aligner to include parameter advising inside the aligner.

Opal can now construct alignments under various configuration settings in parallel

to attempt to come close to producing a parameter-advised alignment in no more

wall-time than aligning under a single default parameter.

http://facet.cs.arizona.edu
http://facet.cs.arizona.edu

111

Because both Opal and Facet are implemented in Java, they can be integrated

easily. When an alignment is constructed, a Facet score is automatically generated

if secondary structure labeling is given. The secondary structure can be generated

using a wrapper for PSIPRED, which will run the secondary-structure prediction and

then format the output so it is readable by Opal. For the structure to be able to be

used for Facet, you must input this file using the --facet structure command-

line argument. This score is output to standard out. In addition, the score can be

printed into the file name by adding the string FACETSCORE to the output file

name argument, when the file is created this string is replaced with the computed

Facet score.

The new version of Opal also includes the ability to use popular versions of the

PAM, BLOSUM and VTML matrices. These can be specified via the --cost command

line argument. If the specified cost name is not built in, you can specify a new

matrix by giving the file name via the same command line argument. The matrix

file should fallow the same formatting convention as BLAST matrices.

If an advisor set of parameter settings is specified using the

--advisor configuration file command line argument then Opal will con-

struct an alignment for each of the configurations in the file. If in addition a

secondary structure prediction is specified, Opal will perform parameter advising.

The input advisor set contains a list of parameter settings in 5-tuple format

mentioned earlier (σ.γI .γT .λI .λT , where σ is the replacement matrix, γI and γT

specify the internal and terminal gap extension penalties and λI and λT specify

the gap open penalties). If advising is performed, the alignment with the highest

estimated accuracy is output to the file specified in the --out best command line

argument. In addition, Opal can output the results for each of the configurations

specified in the advisor set using --out config; the filename in that case should

contain the string CONFIG , which will then be replaced with the parameter

setting.

While an alignment must be generated for each parameter setting in the advising

set, the construction of these alignments is independent. Because of this we enabled

112

Opal to construct the alignments in the advising set in parallel. Opal will auto-

matically detect how many processors are available and run that many threads to

construct alignments, but this can be overridden by specifying a maximum number

of threads using the --max threads command line argument. By doing this, if the

number of processors available is larger than the number of parameter choices in the

advising set, then the total wall-clock time is close to the time it would take to run

the multiple sequence alignment of the input using just a single default parameter

choice.

Version 3.0 of the Opal aligner is available at http://opal.cs.arizona.edu,

and the development version of Opal is available on GiHub at http://git.io/Opal.

Summary

In this chapter, we described our experimental methodology for testing the advising

accuracy of the Facet estimator, as well as demonstrated the resulting increase in

advising accuracy over using a single default parameter choice.

http://opal.cs.arizona.edu
http://git.io/Opal

113

CHAPTER 7

Aligner Advising for Ensemble Alignment

Overview

The multiple sequence alignments computed by an aligner for different settings of

its parameters, as well as the alignments computed by different aligners using their

default settings, can differ markedly in accuracy. Parameter advising is the task

of choosing a parameter setting for an aligner to maximize the accuracy of the

resulting alignment. We extend parameter advising to aligner advising, which in

contrast chooses among a set of aligners to maximize accuracy. In the context of

aligner advising, default advising selects from a set of aligners that are using their

default settings, while general advising selects both the aligner and its parameter

setting.

In this chapter, we apply aligner advising for the first time, to create a true

ensemble aligner. Through cross-validation experiments on benchmark protein se-

quence alignments, we show that parameter advising boosts an aligner’s accuracy

beyond its default setting for virtually all of the standard aligners currently used

in practice. Furthermore, aligner advising with a collection of aligners further im-

proves upon parameter advising with any single aligner, though surprisingly the

performance of default advising on testing data is actually superior to general ad-

vising due to less overfitting to training data.

The new ensemble aligner that results from aligner advising is significantly more

accurate than the best single default aligner, especially on hard-to-align sequences.

This successfully demonstrates how to construct out of a collection of individual

aligners, a more accurate ensemble aligner.

This chapter was adapted from portions of a previous publication (DeBlasio and

Kececioglu, 2015).

114

Aligner Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

 alignment alignment

accuracy 
estimate

max
Accuracy 
Estimator

unaligned
sequences

parameter choices

aligned
sequences

{

alternate
alignments

labelled
alternate

alignments

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn
mnkWNYGVFFVYDVINIddhylvkkds

 (γE,γI,λE,λI,σ)

Aligner

 (γE,γI,λE,λI,σ)

Aligner

Figure 7.1: Overview of the ensemble alignment process. An advisor set is
a collection of aligners and associated parameter choices. Default aligner advising
sets only contain aligners and their default parameter settings, while general aligner
advising sets can include non-default parameter settings. An accuracy estimator
labels each candidate alignment with an accuracy estimate. (Conceptually, an oracle
gives the true accuracy of an alignment.) The alignment with the highest estimated
accuracy is chosen by the advisor.

7.1 Introduction

While it has long been known that the multiple sequence alignment computed by an

aligner strongly depends on the settings for its tunable parameters, and that different

aligners using their default settings can output markedly different alignments of the

same input sequences, there has been relatively little work on how to automatically

choose the best parameter settings for an aligner, or the best aligner to invoke, to

obtain the most accurate alignment of a given set of input sequences.

Automatically choosing the best parameter setting for an aligner on a given

input was termed by Wheeler and Kececioglu (2007), parameter advising. In their

framework, an advisor takes a set of parameter settings, together with an estimator

that estimates the accuracy of a computed alignment, and invokes the aligner on each

setting, evaluates the accuracy estimator on each resulting alignment, and chooses

115

!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(a) Lower-accuracy alignment computed by MUMMALS

!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(b) Higher-accuracy alignment computed by Opal

Figure 7.2: Aligner choice affects the accuracy of computed alignments.
(a) Part of an alignment of benchmark sup 125 from the SABRE (Van Walle et al.,
2005) suite computed by MUMMALS (Pei and Grishin, 2006) using its default parameter
choice; this alignment has accuracy value 28.9%, and Facet estimator value 0.540.
(b) Alignment of the same benchmark by Opal (Wheeler and Kececioglu, 2007)
using its default parameter choice, which has 49.9% accuracy, and higher Facet

value 0.578. In both alignments, the positions that correspond to core blocks of the
reference alignment, which should be aligned in a correct alignment, are highlighted
in bold.

the setting that gives the alignment of highest estimated accuracy. Analogously,

we call automatically choosing the best aligner for a given input, aligner advising.

Figure 7.1 shows an overview of aligner advising. Notice that compared to the

similar Figure 1.3 which describes the parameter advising figure the aligner has

been moved into the advisor set and the advisor may use more than one aligner to

produce alternate alignments

To make this concrete, Figure 7.2 shows an example of advising on a benchmark

set of protein sequences for which a correct reference alignment is known, and hence

for which the true accuracy of a computed alignment can be determined. In this

example, the Facet estimator is used to estimate the accuracy of two alignments

computed by the Opal (Wheeler and Kececioglu, 2012) and MUMMALS (Pei and Gr-

ishin, 2006) aligners. For these two alignments, the one of higher Facet value has

higher true accuracy as well, so an advisor armed with the Facet estimator would

in fact output the more accurate alignment to a user.

116

For a collection of aligners, this kind of advising is akin to an ensemble approach

to alignment, which selects a solution from those output by different methods to

obtain in effect a new method that ideally is better than any individual method.

Ensemble methods have been studied in machine learning (Zhihua, 2012), which

combine the results of different classifiers to produce a single output classification.

Typically such ensemble methods from machine learning select a result by voting.

In contrast, an advisor combines the results of aligners by selecting one via an

estimator.

In this chapter, we extend the framework of parameter advising to aligner ad-

vising, and obtain by this natural approach a true ensemble aligner. Moreover as

our experimental results show, the resulting ensemble aligner is significantly more

accurate than any individual aligner.

7.1.1 Related work

Wheeler and Kececioglu (2007) first introduced the notion of parameter advisors ;

Kececioglu and DeBlasio (2013) investigated the construction of alignment accuracy

estimators, resulting in the Facet estimator (DeBlasio et al., 2012b; DeBlasio and

Kececioglu, 2014b); DeBlasio and Kececioglu (2014a, 2016) investigated how to best

form the set of parameter choices for an advisor, called an advisor set, developing an

efficient approximation algorithm for finding a near-optimal advisor set for a given

estimator. This prior work applied parameter advising to boosting the accuracy of

the Opal aligner (Wheeler and Kececioglu, 2012). In contrast, this chapter applies

parameter advising to all commonly-used aligners, and aligner advising to combine

them into a new, more accurate, ensemble aligner.

To our knowledge, the only prior work on combining aligners is by Wallace

et al. (2006) on M-Coffee, and by Muller et al. (2010) on AQUA. The AQUA tool

chooses between an alignment computed by Muscle (Edgar, 2004b) or MAFFT (Ka-

toh et al., 2005) based on their NorMD (Thompson et al., 2001) score; our results

given in Chapter 6 show that for choosing the more accurate alignment, the NorMD

score used by AQUA is much weaker than the Facet estimator used here for aligner

117

advising. M-Coffee uses a standard progressive alignment heuristic to compute an

alignment under position-dependent substitution scores whose values are determined

by alignments from different aligners. As Section 7.3.3 later shows, when run on the

same set of aligners, M-Coffee is strongly dominated by the ensemble approach of

this chapter.

Contributions

Our prior work on parameter advising focused on boosting the accuracy of the Opal

aligner (Wheeler and Kececioglu, 2007, 2012) through an input-dependent choice

of parameter values. This chapter applies our advising technique for the first time

to aligners other than Opal, both by advising parameter choices for them, and by

advising how to combine them into an new ensemble aligner.

Plan of the chapter

An advisor selects aligners and parameter values from a small set of choices that

is drawn from a larger universe of all possible choices. Section 7.2 describes how

we construct this universe of aligners and their parameter choices for advisor learn-

ing. Section 7.3 then experimentally evaluates our approach to ensemble alignment

on real biological benchmarks. Finally, Section 7.4 gives conclusions, and offers

directions for further research.

7.2 Constructing the universe for aligner advising

We extend parameter advising with a single aligner to aligner advising with a collec-

tion of aligners, by having the choices in the advisor set now specify both a particular

aligner and a parameter setting for that aligner. To specify the universe that such

an advisor set is drawn from during learning, we must determine what aligners to

consider, and what parameter settings to consider for those aligners.

118

7.2.1 Determining the universe of aligners

For default aligner advising, where the advisor set consists of distinct aligners,

each using their default parameter setting, we learned advisor sets over a uni-

verse containing as many of the commonly-used aligners from the literature as

possible. Specifically, the universe for default advising consisted of the follow-

ing 17 aligners: Clustal (Thompson et al., 1994), Clustal2 (Larkin et al.,

2007), Clustal Omega (Sievers et al., 2011), DIALIGN (Subramanian et al., 2008),

FSA (Bradley et al., 2009), Kalign (Lassmann and Sonnhammer, 2005a), MAFFT (Ka-

toh et al., 2005), MUMMALS (Pei and Grishin, 2006), Muscle (Edgar, 2004a),

MSAProbs (Liu et al., 2010), Opal (Wheeler and Kececioglu, 2007), POA (Lee et al.,

2002), PRANK (Loytynoja and Goldman, 2005), PROBALIGN (Roshan and Livesay,

2006), ProbCons (Do et al., 2005), SATé (Liu et al., 2011), and T-Coffee (Notredame

et al., 2000).

7.2.2 Determining the universe of parameter settings

For general aligner advising, we selected a subset of the above aligners on which we

enumerated values for their tunable parameters, to form a universe of parameter

settings. We selected this subset of aligners by the following process. First, we

computed an optimal oracle set of cardinality k = 5 over the universe of 17 align-

ers for default advising listed above. This set consisted of Kalign, MUMMALS, Opal,

PROBALIGN, and T-Coffee. We then expanded this set further by adding four align-

ers that are used extensively in the literature: Clustal Omega, MAFFT, Muscle,

and ProbCons. In the experiments described later in Section 7.3.2, we constructed

greedy advisor sets over the universe of 17 aligners for default aligner advising, and

noticed a large increase in advising accuracy at cardinality [6, 8] (which can be seen

in Figure 7.8). The greedy advisor sets at these cardinalities contained all of the

aligners already chosen so far, with the addition of the PRANK aligner. Finally, we

added PRANK to our set for this reason. The above 10 aligners comprise the set we

considered for general aligner advising.

119

Table 7.1 lists the universe of parameter settings for these aligners for general

advising. For each aligner, we enumerated parameter settings by forming a cross

product of values for each of its tunable parameters. We determined the values for

each tunable parameter by one of two ways. For aligners with web-server versions

(namely Clustal Omega and ProbCons), we used all values recommended for each

parameter. For all other aligners, we chose either one or two values above and below

the default value for each parameter, to attain a cross product with less than 200

parameter settings. If a range was specified for a numeric parameter, values were

chosen to cover this range as evenly as possible. For non-numeric parameters, we

used all available options. Table 7.1 summarizes the resulting universe for general

advising of over 800 parameter settings.

120

T
ab

le
7.

1:
U

n
iv

e
rs

e
o
f

P
a
ra

m
e
te

r
S

e
tt

in
g
s

fo
r

G
e
n

e
ra

l
A

li
g
n

e
r

A
d
v
is

in
g

P
a
ra

m
e
te

r
T

u
n
a
b
le

A
li
g
n
e
r

se
tt

in
g
s

p
a
ra

m
e
te

rs
V

e
rs

io
n

P
a
ra

m
e
te

r
n
a
m

e
D

e
fa

u
lt

v
a
lu

e
,
v

A
lt

e
rn

a
te

v
a
lu

e
s

C
l
u
s
t
a
l
O
m
e
g
a

(S
ie

v
e
rs

e
t

a
l.
,

2
0
1
1
)

1
2
0
1

5
1
.2

.0

N
u
m

b
e
r

o
f

g
u
id

e
tr

e
e

it
e
ra

ti
o
n
s

0
1
,

3
,

5
N

u
m

b
e
r

o
f

H
M

M
it

e
ra

ti
o
n
s

0
1
,

3
,

5
N

u
m

b
e
r

o
f

c
o
m

b
in

e
d

it
e
ra

ti
o
n
s

0
1
,

3
,

5
D

is
ta

n
c
e

m
a
tr

ix
c
a
lc

u
la

ti
o
n
s,

in
it

ia
l

m
B

e
d

F
u
ll

a
li
g
n
m

e
n
ts

D
is

ta
n
c
e

m
a
tr

ix
c
a
lc

u
la

ti
o
n
s,

it
e
ra

ti
o
n
s

m
B

e
d

F
u
ll

a
li
g
n
m

e
n
ts

K
a
l
i
g
n

(L
a
ss

m
a
n
n

a
n
d

S
o
n
n
h
a
m

m
e
r,

2
0
0
5
a
)

1
6
2

4
2
.0

4

G
a
p

o
p

e
n

p
e
n
a
lt

y
5
5

4
0
,

7
0

G
a
p

e
x
te

n
si

o
n

p
e
n
a
lt

y
8
.5

7
,

1
0

T
e
rm

in
a
l

g
a
p

p
e
n
a
lt

y
4
.2

5
3
.5

,
5

B
o
n
u
s

N
o

Y
e
s

M
A
F
F
T

(K
a
to

h
e
t

a
l.
,

2
0
0
5
)

1
0
0

3
6
.9

2
3
b

S
u
b
st

it
u
ti

o
n

m
a
tr

ix
B
L
S
M
6
2

B
L
S
M
8
0
,
V
T
M
L
1
2
0
,
V
T
M
L
2
0
0

G
a
p

o
p

e
n

p
e
n
a
lt

y
1
.5

3
1 4
v
,

1 2
v
,

3 2
v
,

2
v

G
a
p

e
x
te

n
si

o
n

p
e
n
a
lt

y
0
.1

2
3

1 2
v
,

2
v
,

4
v

M
u
s
c
l
e

(E
d
g
a
r,

2
0
0
4
a
)

8
0

3
3
.8

.3
1

P
ro

fi
le

sc
o
re

L
o
g
-e

x
p

e
c
ta

ti
o
n
:
V
T
M
L
2
4
0

S
u
m

-o
f-

p
a
ir

s:
P
A
M
2
0
0
,
V
T
M
L
2
4
0

O
b

je
c
ti

v
e

fu
n
c
ti

o
n
2

s
p
m

d
p
,
p
s
,
s
p
,
s
p
f
,
x
p

G
a
p

o
p

e
n

p
e
n
a
lt

y
,

p
ro

fi
le

d
e
p

e
n
d
e
n
t

v
3

1 2
v
,

3 4
v
,

5 4
v
,

3 2
v

M
U
M
M
A
L
S

(P
e
i

a
n
d

G
ri

sh
in

,
2
0
0
6
)

2
9

3
4

1
.0

1
D

iff
e
re

n
ti

a
te

m
a
tc

h
st

a
te

s
in

u
n
a
li
g
n
e
d

re
g
io

n
s

Y
e
s

N
o

S
o
lv

e
n
t

a
c
c
e
ss

ib
il
it

y
c
a
te

g
o
ri

e
s

1
2
,

3
S
e
c
o
n
d
a
ry

st
ru

c
tu

re
ty

p
e
s

3
1

O
p
a
l

(W
h
e
e
le

r
a
n
d

K
e
c
e
c
io

g
lu

,
2
0
0
7
)

1
6
2

5
3
.0

b

S
u
b
st

it
u
ti

o
n

m
a
tr

ix
V
T
M
L
2
0
0
5

B
L
S
M
6
2
5
,
V
T
M
L
4
0
5

In
te

rn
a
l

g
a
p

o
p

e
n

p
e
n
a
lt

y
γ

=
4
5

7
0
,

9
5

T
e
rm

in
a
l

g
a
p

o
p

e
n

p
e
n
a
lt

y
0
.4
γ

0
.0

5
γ

,
0
.7

5
γ

In
te

rn
a
l

g
a
p

e
x
te

n
si

o
n

p
e
n
a
lt

y
λ

=
4
2

4
0
,

4
5

T
e
rm

in
a
l

g
a
p

e
x
te

n
si

o
n

p
e
n
a
lt

y
λ
−

3
λ

P
R
A
N
K

(L
o
y
ty

n
o
ja

a
n
d

G
o
ld

m
a
n
,

2
0
0
5
)

5
0

3
.1

4
0
6
0
3

G
a
p

ra
te

0
.0

0
5

1 5
v
,

1 2
v
,

3 2
v
,

2
v

G
a
p

e
x
te

n
si

o
n

0
.5

1 5
v
,

1 2
v
,

3 2
v
,

2
v

T
e
rm

in
a
l

g
a
p
s

A
lt

e
rn

a
te

sc
o
ri

n
g

N
o
rm

a
l

sc
o
ri

n
g

P
R
O
B
A
L
I
G
N

(R
o
sh

a
n

a
n
d

L
iv

e
sa

y
,

2
0
0
6
)

6
4

3
1
.4

C
o
n
si

st
e
n
c
y

re
p

e
ti

ti
o
n
s

2
0
,

1
,

3
It

e
ra

ti
v
e

re
fi

n
e
m

e
n
t

re
p

e
ti

ti
o
n
s

1
0
0

0
,

5
0
0

P
re

-t
ra

in
in

g
re

p
e
ti

ti
o
n
s

0
1
,

2
,

3
,

4
,

5
,

2
0

P
r
o
b
C
o
n
s

(D
o

e
t

a
l.
,

2
0
0
5
)

4
8
6

3
1
.1

2
T

h
e
rm

o
d
y
n
a
m

ic
te

m
p

e
ra

tu
re

5
3
,

5
G

a
p

o
p

e
n

2
2

1
1
,

3
3

G
a
p

e
x
te

n
si

o
n

1
0
.5

,
1
.5

T
-
C
o
f
f
e
e

(N
o
tr

e
d
a
m

e
e
t

a
l.
,

2
0
0
0
)

3
6

3
1
0
.0

0
.r

1
6
1
3

S
u
b
st

it
u
ti

o
n

m
a
tr

ix
B
L
S
M
6
2

B
L
S
M
4
0
,
B
L
S
M
8
0

G
a
p

o
p

e
n

0
-5

0
,

-5
0
0
,

-1
0
0
0

G
a
p

e
x
te

n
si

o
n

0
-5

,
-1

0
T

o
ta

l
8
5
6

1
P

a
ra

m
e
te

r
se

tt
in

g
s

re
tr

ie
v
e
d

fr
o
m

th
e
C
l
u
s
t
a
l
O
m
e
g
a

w
e
b
-s

e
rv

e
r

a
t

E
B

I
(w
w
w
.
e
b
i
.
a
c
.
u
k
/
T
o
o
l
s
/
m
s
a
/
c
l
u
s
t
a
l
o
).

2
s
p
:

su
m

-o
f-

p
a
ir

s
sc

o
re

;
s
p
f
:

d
im

e
r

a
p
p
ro

x
im

a
ti

o
n

o
f

su
m

-o
f-

p
a
ir

s
sc

o
re

;
s
p
m
:

in
p
u
t

d
e
p

e
n
d
e
n
t

(s
p

if
in

p
u
t

is
le

ss
th

a
n

1
0
0

se
q
u
e
n
c
e
s,

s
p
f

o
th

e
rw

is
e
);

d
p
:

d
y
n
a
m

ic
p
ro

g
ra

m
m

in
g

sc
o
re

;
p
s
:

a
v
e
ra

g
e

p
ro

fi
le

se
q
u
e
n
c
e

sc
o
re

;
x
p
:

c
ro

ss
p
ro

fi
le

sc
o
re

.

3
D

e
fa

u
lt

v
a
lu

e
s

fo
r

th
e

g
a
p

o
p

e
n

p
e
n
a
lt

y
a
re

-2
.9

w
h
e
n

th
e

lo
g
-e

x
p

e
c
ta

ti
o
n

p
ro

fi
le

is
c
h
o
se

n
,

-1
4
3
9

fo
r

su
m

-o
f-

p
a
ir

s
u
si

n
g
P
A
M
2
0
0
,

a
n
d

-3
0
0

fo
r

su
m

-o
f-

p
a
ir

s
u
si

n
g
V
T
M
L
2
4
0
.

A
lt

e
rn

a
te

v
a
lu

e
s

a
re

m
u
lt

ip
le

s
o
f

th
is

d
e
fa

u
lt

v
a
lu

e
.

4
M
U
M
M
A
L
S

is
d
is

tr
ib

u
te

d
w

it
h

2
9

p
re

c
o
m

p
u
te

d
h
id

d
e
n

M
a
rk

o
v

m
o
d
e
ls

,
e
a
c
h

o
f

w
h
ic

h
is

a
ss

o
c
ia

te
d

w
it

h
a

se
tt

in
g

o
f

th
re

e
tu

n
a
b
le

p
a
ra

m
e
te

rs
.

5
T

h
e

su
b
st

it
u
ti

o
n

m
a
tr

ic
e
s

u
se

d
b
y

O
p
a
l

a
re

sh
if

te
d
,

sc
a
le

d
,

a
n
d

ro
u
n
d
e
d

to
in

te
g
e
r

v
a
lu

e
s

in
th

e
ra

n
g
e

[0
,
1
0
0
].

6
P

a
ra

m
e
te

r
se

tt
in

g
s

re
tr

ie
v
e
d

fr
o
m

th
e
P
r
o
b
C
o
n
s

w
e
b
-s

e
rv

e
r

a
t

S
ta

n
fo

rd
(p
r
o
b
c
o
n
s
.
s
t
a
n
f
o
r
d
.
e
d
u
).

121

42%	

44%	

46%	

48%	

50%	

52%	

54%	

56%	

58%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Advisor	
 Set	
 Cardinality	

	
 	
 MUMMALS	
 	
 	
 T-­‐Coffee	
 	
 	
 PRANK	

	
 	
 Probalign	
 	
 	
 MAFFT	
 	
 	
 Kalign	

	
 	
 Opal	
 	
 	
 MUSCLE	
 	
 	
 Clustal	
 Omega	

	
 	
 ProbCons	

Figure 7.3: Accuracy of parameter advising using Facet. The plot shows ad-
vising accuracy for each aligner from Table 7.1, using parameter advising on greedy
sets with the Facet estimator learned by difference fitting. The horizontal axis is
the cardinality of the advisor set, and the vertical axis is the advising accuracy on
testing data averaged over all benchmarks and folds, under 12-fold cross-validation.

7.3 Evaluating ensemble alignment

We evaluate the performance of advising through experiments on a collection of pro-

tein multiple sequence alignment benchmarks. A full description of the benchmark

collection is given in Chapter 6, and is briefly summarized below. The experiments

compare the accuracy of parameter and aligner advising to the accuracy of individual

aligners using their default parameter settings.

The benchmark suites used in our experiments consist of reference alignments

that are largely induced by performing structural alignment of the known three-

dimensional structures of the proteins. Specifically, we use the BENCH suite of Edgar

(2009), supplemented by a selection of benchmarks from the PALI suite (Balaji et al.,

2001). The entire benchmark collection consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-

122

represented in this collection, compared to hard-to-align benchmarks. To correct

for this bias when evaluating average advising accuracy, we binned the 861 bench-

marks in our collection by difficulty, where the difficulty of a benchmark is its

average accuracy under three commonly-used aligners, namely Clustal Omega,

MAFFT, and ProbCons, using their default parameter settings. We then divided

the full range [0, 1] of accuracies into 10 bins with difficulties [(j−1)/10, j/10] for

j = 1, . . . , 10. The weight wi of benchmark Bi falling in bin j that we used for train-

ing is wi = (1/10)(1/nj), where nj is the number of benchmarks in bin j. These

weights wi are such that each difficulty bin contributes equally to the advising ob-

jective function f(P). Note that with this weighting, an aligner that on every

benchmark gets an accuracy equal to its difficulty, will achieve an average advising

accuracy of roughly 50%.

7.3.1 Parameter advising

We first examine the results of parameter advising for a single aligner using the

Facet estimator. We learned the coefficients for Facet by difference fitting on

computed alignments obtained using the oracle set of cardinality k = 17 found for

the parameter universe for each aligner. (We trained the estimator on an oracle set

of this cardinality to match the size of the universe for default aligner advising.)

Given this estimator, we constructed greedy advisor sets for each aligner.

Figure 7.3 shows the accuracy of parameter advising using greedy advisor sets

of cardinality k≤ 15, for each of the 10 aligners in Table 7.1, under 12-fold cross-

validation. The plot shows advising accuracy on the testing data, averaged over all

benchmarks and folds.

Almost all aligners benefit from parameter advising, though their advising accu-

racy eventually reaches a plateau. While our prior chapters showed that parameter

advising boosts the accuracy of the Opal aligner, Figure 7.3 shows this result is not

aligner dependent.

123

52%	

53%	

54%	

55%	

56%	

57%	

58%	

59%	

60%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Advisor	
 Set	
 Cardinality	

	
 	
 Default	
 advisisng	
 	
 	
 MUMMALS	

	
 	
 General	
 advising	
 	
 	
 Probalign	

	
 	
 Opal	
 	
 	
 Opal	
 (alternate)	

Facet

Figure 7.4: Aligner advising and parameter advising using Facet. The plot
shows default and general aligner advising accuracy, and parameter advising accu-
racy for Opal, MUMMALS, and PROBALIGN, using the Facet estimator. The horizontal
axis is the cardinality of the advisor set, and the vertical axis is advising accuracy on
testing data averaged over all benchmarks and folds under 12-fold cross-validation.

7.3.2 Aligner advising

To evaluate aligner advising, we followed a similar approach, constructing an oracle

set of cardinality k = 17 over the union of the universe for default advising from

Section 7.2.1 and the universe for general advising from Section 7.2.2, learning coef-

ficients for Facet using difference fitting, and constructing greedy sets using Facet

for default and general advising.

Figure 7.4 shows the accuracy of default and general advising using greedy sets

of cardinality k≤15, along with the three best parameter advising curves from

Figure 7.3, for Opal, PROBALIGN, and MUMMALS. The plot shows advising accuracy

on testing data, averaged over benchmarks and folds.

The dashed red curve in Figure 7.4 also shows the accuracy of Opal for parameter

advising with greedy sets computed over an alternate universe of much more fine-

grained parameter choices. This is the same universe used for the experiments in

Chapter 6. Note that the dashed curve for parameter advising with Opal, using

124

52%	

53%	

54%	

55%	

56%	

57%	

58%	

59%	

60%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Advisor	
 Set	
 Cardinality	

	
 	
 General	
 advising	
 	
 	
 Probalign	

	
 	
 Default	
 advising	
 	
 	
 ProbCons	

	
 	
 MUMMALS	
 	
 	
 Opal	

TCS

Figure 7.5: Aligner advising and parameter advising using TCS. The plot
shows default and general aligner advising accuracy, and parameter advising accu-
racy for Opal, MUMMALS, PROBALIGN, and ProbCons, using the TCS estimator. The
horizontal axis is the cardinality of the advisor set, and the vertical axis is advis-
ing accuracy on testing data averaged over all benchmarks and folds under 12-fold
cross-validation.

greedy sets from these finer universes for each fold, essentially matches the accuracy

of general advising at cardinality k ≥ 4.

Testing the significance of improvement

To test the statistical significance of the improvement in default advising accu-

racy over using a single default aligner, we used the one-tailed Wilcoxon sign

test (Wilcoxon, 1945). Performing this test in each difficulty bin, we found a signif-

icant improvement in accuracy (p < 0.05) on benchmarks with difficulty (0.3, 0.4]

at all cardinalities 2 ≤ k ≤ 15, and on benchmarks with difficulty at most 0.4 at

cardinality 6≤k≤9.

We also tested the significance of the improvement of default advising over the

best parameter advisor at each cardinality k (namely MUMMALS for k≤ 4 and Opal

for k≥5), and found that at cardinality k≥5 there is again significant improvement

(p<0.05) on benchmarks with difficulty (0.3, 0.4].

125

49%	

50%	

51%	

52%	

53%	

54%	

55%	

56%	

57%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	

Av
er
ag
e	

Ac

cu
ra
cy
	

Advisor	
 Set	
 Cardinality	

	
 	
 Facet,	
 oracle	
 set	

	
 	
 M-­‐Coffee,	
 oracle	
 set	

	
 	
 M-­‐Coffee	
 default	
 cardinality	

Figure 7.6: Accuracy of aligner advising compared to M-Coffee. The plot
shows average accuracy for aligner advising using Facet, and meta-alignment using
M-Coffee, on oracle sets of aligners. Performance on the default M-Coffee set of six
aligners is indicated by large circles on the dotted vertical line. The horizontal axis
is cardinality of the oracle sets, and the vertical axis is average accuracy on testing
data over all benchmarks and folds under 12-fold cross-validation.

Advising with an alternate estimator

We also evaluated in the same way parameter advising and aligner advising on

greedy sets using the TCS estimator (Chang et al., 2014) (the best other estimator

for advising from the literature). Figure 7.5 shows results using TCS for parameter

advising (on the four most accurate aligners), and for general and default aligner

advising. Note that while TCS is sometimes able to increase accuracy above using

a single default parameter, this increase is smaller than for Facet; moreover, TCS

often has a decreasing trend in accuracy for increasing cardinality.

7.3.3 Comparing ensemble alignment to meta-alignment

Another approach to combining aligners is the so-called meta-alignment approach of

M-Coffee (Wallace et al., 2006) (described in Section 7.1.1). M-Coffee computes a

multiple alignment using position-dependent substitution scores obtained from alter-

nate alignments generated by a collection of aligners. By default, M-Coffee uses the

126

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Average	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1.0	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Benchmark	
 Bins	

Default	
 advising	

MUMMALS	
 default	

Opal	
 default	

Probalign	
 default	

(12)	

(13)	

(29)	

(33)	

(35)	

(60)	

(51)	

(74)	

(136)	

(418)	

Figure 7.7: Accuracy of default aligner advising, and aligners with their
default settings, within difficulty bins. In the bar chart on the left, the
horizontal axis shows all ten benchmark bins, and the vertical bars show accuracy
averaged over just the benchmarks in each bin. The accuracy of default advising
using the Facet estimator is shown for the greedy sets of cardinality k = 5, along
with the accuracy of the default settings for PROBALIGN, Opal, and MUMMALS. The bar
chart on the right shows accuracy uniformly averaged over the bins. In parentheses
above the bars are the number of benchmarks in each bin.

following six aligners: Clustal2, T-Coffee, POA, Muscle, MAFFT, Dialign-T (Sub-

ramanian et al., 2005), PCMA (Pei et al., 2003), and ProbCons. The tool also allows

use of Clustal, Clustal Omega, Kalign, AMAP (S. Schwartz and Pachter, 2007), and

Dialign-TX. Figure 7.6 shows the average accuracy of both M-Coffee and our en-

semble approach with Facet, using the default aligner set of M-Coffee (the dotted

vertical line with large circles), as well as oracle sets constructed over this M-Coffee

universe of 13 aligners. Notice that at all cardinalities our ensemble aligner sub-

stantially outperforms meta-alignment even on the subset of aligners recommended

by the M-Coffee developers.

127

54%	

55%	

56%	

57%	

58%	

59%	

60%	

61%	

62%	

63%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Advisor	
 Set	
 Cardinality	

	
 	
 General	
 advising,	
 tes6ng	

	
 	
 Default	
 advising,	
 tes6ng	

	
 	
 General	
 advising,	
 training	

	
 	
 Default	
 advising,	
 training	

Figure 7.8: General and default aligner advising on training and testing
data. The plot shows general and default aligner advising accuracy using Facet.
Accuracy on the training data is shown with dashed lines, and on the testing data
with solid lines. The horizontal axis is cardinality of the advisor set, and the vertical
axis is advising accuracy averaged over all benchmarks and folds under 12-fold cross-
validation.

7.3.4 Advising accuracy within difficulty bins

Figure 7.7 shows advising accuracy within difficulty bins for default aligner advising

compared to using the default parameter settings for the three aligners with highest

average accuracy, namely MUMMALS, Opal, and PROBALIGN. The figure displays the

default advising result from Section 7.3.2 at cardinality k = 5. The bars in the

chart show average accuracy over the benchmarks in each difficulty bin, as well as

the average accuracy across all bins. (The number of benchmarks in each bin is in

parentheses above the bars.) Note that aligner advising gives the greatest boost for

the hardest-to-align benchmarks: for the bottom two bins, advising yields an 8%

increase in accuracy over the best aligner using its default parameter setting.

7.3.5 Generalization of aligner advising

The results thus far have shown advising accuracy averaged over the testing data

associated with each fold. We now compare the training and testing advising ac-

128

curacy to assess how our method might generalize to data not in our benchmark

set.

Figure 7.8 shows the average accuracy of default and general aligner advising on

both training and testing data. Note that the drop between training and testing

accuracy is much larger for general advising than for default advising, resulting in

general advising performing worse than default advising though its training accu-

racy is much higher. This indicates that general advising is strongly overfitting to

the training data, but could potentially achieve much higher testing accuracy. Ad-

ditionally, there is a drop in training accuracy for default advising with increasing

cardinality, though after its peak an advisor using greedy sets should remain flat in

training accuracy as cardinality increases when using a strong estimator.

7.3.6 Theoretical limit on advising accuracy

An oracle is an advisor that uses a perfect estimator, always choosing the alignment

from a set that has highest true accuracy. To examine the theoretical limit on how

well aligner advising can perform, we compare the accuracy of aligner advising using

Facet with the performance of an oracle. Figure 7.9 shows the accuracy of both

default and general aligner advising using greedy sets, as well as the performance of

an oracle using oracle sets computed on the default and general advising universes.

(Recall an oracle set is an optimal advisor set for an oracle.) The plot shows advising

accuracy on testing data, averaged over all benchmarks and folds. The large gap in

performance between the oracle and an advisor using Facet shows the increase in

accuracy that could potentially be achieved by developing an improved estimator.

7.3.7 Composition of advisor sets

Table 7.2 lists the greedy advisor sets for both default and general advising for all

cardinalities k ≤ 10. A consequence of the construction of greedy advisor sets is

that the greedy set of cardinality k consists of the entries in a column in the first

k rows of the table. The table shows these sets for just one fold from the 12-fold

129

52%	

54%	

56%	

58%	

60%	

62%	

64%	

66%	

68%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

Ad
vi
si
ng
	
 A
cc
ur
ac
y	

Advisor	
 Set	
 Cardinality	

	
 	
 Oracle,	
 general	
 advising	
 	
 	
 Oracle,	
 default	
 advising	

	
 	
 Facet,	
 general	
 advising	
 	
 	
 Facet,	
 default	
 advising	

Figure 7.9: Accuracy of aligner advising using a perfect estimator. The
plot shows advising accuracy for default and general aligner advising, both on or-
acle sets for a perfect estimator, and on greedy sets for the Facet estimator. The
horizontal axis is the cardinality of the advisor set, and the vertical axis is advis-
ing accuracy on testing data averaged over all benchmarks and folds under 12-fold
cross-validation.

cross-validation. For general advising sets, an entry specifies the aligner that is used,

and for aligners from the general advising universe, a tuple of parameter values in

the order listed in Table 7.1. The two exceptions are MUMMALS, whose 6-tuple comes

from its predefined settings file, and whose last three elements correspond to the

three parameters listed in Table 7.1; and MSAProbs, whose empty tuple stands for

its default setting. It is interesting that other than MSAProbs, the general advising

set does not contain any aligner’s default parameter settings, though its values are

close to the default setting.

7.3.8 Running time for advising

We compared the time to evaluate the Facet estimator on an alignment to the time

needed to compute that alignment by the three aligners used for determining align-

ment difficulty: Clustal Omega, MAFFT, and ProbCons. To compute the average

running time for these aligners on a benchmark, we measured the total time for

130

Table 7.2: Greedy Default and General Advising Sets

Default advising General advising

1 MUMMALS MUMMALS (0.2, 0.4, 0.6, 1, 2, 3)
2 Opal Opal (VTML200, 45, 2, 45, 45)
3 PROBALIGN Opal (BLSM62, 70, 3, 45, 42)
4 Kalign MUMMALS (0.15, 0.2, 0.6, 1, 1, 3)
5 Muscle Opal (BLSM62, 45, 33, 42, 42)
6 T-Coffee MSAProbs ()
7 PRANK Kalign (55, 8.5, 4.25, 0)
8 Clustal Omega MAFFT (VTML200, 0.7515, 0.492)
9 DIALIGN Opal (BLSM62, 95, 4, 45, 42)
10 ProbCons Opal (BLSM62, 45, 2, 45, 42)

each of these aligners to align all 861 benchmarks on a desktop computer with a

2.4 GHz Intel i7 8-core processor and 8 Gb of RAM. The average running time for

Clustal Omega, MAFFT, and ProbCons was less than 1 second per benchmark, as was

the average running time for Facet. As stated in Chapter 3 the time complexity for

Facet is dependent on the number of columns in an alignment, and should take rel-

atively less time than computing an alignment for benchmarks with long sequences;

the standard benchmark suites tend to include short sequences, however, which are

fast to align. This time to evaluate Facet does not include the time to predict

protein secondary structure, which is done once for the sequences in a benchmark,

and was performed using PSIPRED (Jones, 1999) version 3.2 with its standard set-

tings. Secondary structure prediction with a tool like PSIPRED has a considerably

longer running time than alignment, due to an internal PSI-BLAST search during

prediction; on average, PSIPRED took just under 6 minutes per benchmark to predict

secondary structure.

7.4 Software

Our new ensemble aligner is implemented using Perl as a wrapper around the vari-

ous underlying aligners. The Perl programs can be used in one of two ways:

(1) Using the predefined set program – The Facet release

131

comes with two applications, default ensemble alignment.pl and

ensemble alignment.pl, which can be used to run default and general

ensemble alignment on sets learned from all training benchmarks. To

use these applications, you provide the set cardinality you would like to

use, the unaligned sequences, and predicted secondary structure. The

application then runs each program in order, and outputs the result to

standard out.

(2) Using a program that accepts an advisor set – We have also

included an application ensemble alignment from set.pl that accepts

the input unaligned sequences, secondary structure prediction, and an

advisor set similar to the one defined in earlier chapters for parameter

advising. The advisor set contains the aligner and parameter setting

information that will be used to run the aligners. Each line of the file

contains one aligner and parameter setting in the format A S where A is

the aligner name and S is the tuple of parameter settings for that aligner

separated by “.” characters; for example, the default Opal parameter

setting would be Opal VTML200.45.11.42.41. Parameter advising sets for

each of the applications tested, as well as default and general advising

parameter sets in the proper format, can be found on the Facet website.

For both of these methods, the applications must be edited if any of the applications

being used are not in the default installation location.

Summary

In this work, we have extended parameter advising to aligner advising, to yield a true

ensemble aligner. Parameter advising gives a substantial boost in accuracy for nearly

all aligners currently used in practice. Furthermore, default and general aligner

advising both yield further boosts in accuracy, with default advising having better

generalization. As these results indicate, ensemble alignment by aligner advising is

a promising approach for exploiting future advances in aligner technology.

132

CHAPTER 8

Adaptive Local Realignment

Overview

Mutation rates differ across the length of most proteins, but when multiple se-

quence alignments are constructed for protein sequences, a single alignment param-

eter choice is often used across the entire length. We provide for the first time an

approach called adaptive local realignment that computes protein multiple se-

quence alignments using diverse parameter settings for different regions of the input

sequences. In this way, parameter choices can vary across the length of a protein to

more closely model the local mutation rate.

Using adaptive local realignment boosts alignment accuracy over using a default

parameter choice. In addition, when adaptive local realignment is combined with

global parameter advising, we see an increase in accuracy of almost 24% over the

default parameter choice on hard-to-align benchmarks.

8.1 Introduction

Since the 1960s it has been known that proteins can have distinct mutation rates

at different locations along the molecule (Fitch and Margoliash, 1967). The amino

acids at some positions in a protein may stay unmutated for long periods of time,

while other regions change a great deal (often called “hypermutable” regions). This

has led to methods in phylogeny construction that take variable mutation rates into

account when building trees from sequences (Yang, 1993). In multiple sequence

alignment, however, to our knowledge variation in mutation rates across sequences

has yet to be exploited to improve alignment accuracy. Multiple sequence alignments

are typically computed using a single setting of values for the parameters of the

133

1cpt_ ... gydpMWIATKhadvmqigkqpglfs ... dkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpaLIPR------------------LVDEAVRW-Tapv ...	--hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... gkqVVLLSGshane----------- ... adeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRL-Hppl ...	--hrcvgaafAIMQIKAIFSVLLRey-ef ...
1oxa_ ... gqdAWLVTGydeakaal-------- ... adeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradpsALPN------------------AVEEILRY-Iapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... dlvwtrcnggHWIATR--------- ... sdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpeRIPA------------------ACEELLRR-Fslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... grvTRYLSSqrlikeac-------- ... deniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRL-Wpta ...	--racigqqfALHEATLVLGMMLKhf-df ...
1izo_A ... gknFICMTGaeaak----------- ... srmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsrERE-----------------MFVQEVRRY-Ypfg ...	kghrcpgegiTIEVMKASLDFLVHqi-ey ...
1dt6_A ... mkpTVVLHGyeavk----------- ... leslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRF-Idll ...	--rmcvgeglARMELFLFLTSILQnf-kl ...
1n40_A ... gaeAWLVSSyalctqvl-------- ... delfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpeLIPA------------------GVEELLRINlsfa ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... rfpLALIFDpegve----------- ... reralseavtllvaghetVASALTWsflllshrpdwqkrvaeseeAALA------------------AFQEALRL-Yppa ...	--rlclgrdfALLEGPIVLRAFFRrf-rl ...

1cpt_ ... ah-iegydpMWIATKhadvmqigkq ... ddkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpa------------------LIPRLVDEAVRWTapv ... --hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... fq-lagkq-VVLLSGshanefffra ... sadeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRLHppl ...	--hrcvgaafAIMQIKAIFSVLLReyef- ...
1oxa_ ... vr-flgqd-AWLVTGydeakaalsd ... sadeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradps------------------ALPNAVEEILRYIapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... tr-cnggH--WIATRgqlireayed ... tsdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpe------------------RIPAACEELLRRFslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... fe-apgrv-TRYLSSqrlikeacde ... ddeniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRLWpta ...	--racigqqfALHEATLVLGMMLKhfdfe ...
1izo_A ... ar-llgkn-FICMTGaeaakvfydt ... dsrmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsr-----------------EREMFVQEVRRYYpfg ...	kghrcpgegiTIEVMKASLDFLVHqiey- ...
1dt6_A ... vy-lgmkp-TVVLHGyeavkealvd ... tleslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRFIdll ...	--rmcvgeglARMELFLFLTSILQnfklq ...
1n40_A ... vrtitgae-AWLVSSyalctqvled ... sdelfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpe------------------LIPAGVEELLRINlsf ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... lp-lprfp-LALIFDpegvegalla ... preralseavtllvaghetVASALTWsflllshrpdwqkrvaesee------------------AALAAFQEALRLYppa ...	--rlclgrdfALLEGPIVLRAFFRrfrld ...
 |

	

	

(a) default parameter settings

1cpt_ ... gydpMWIATKhadvmqigkqpglfs ... dkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpaLIPR------------------LVDEAVRW-Tapv ...	--hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... gkqVVLLSGshane----------- ... adeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRL-Hppl ...	--hrcvgaafAIMQIKAIFSVLLRey-ef ...
1oxa_ ... gqdAWLVTGydeakaal-------- ... adeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradpsALPN------------------AVEEILRY-Iapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... dlvwtrcnggHWIATR--------- ... sdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpeRIPA------------------ACEELLRR-Fslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... grvTRYLSSqrlikeac-------- ... deniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRL-Wpta ...	--racigqqfALHEATLVLGMMLKhf-df ...
1izo_A ... gknFICMTGaeaak----------- ... srmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsrERE-----------------MFVQEVRRY-Ypfg ...	kghrcpgegiTIEVMKASLDFLVHqi-ey ...
1dt6_A ... mkpTVVLHGyeavk----------- ... leslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRF-Idll ...	--rmcvgeglARMELFLFLTSILQnf-kl ...
1n40_A ... gaeAWLVSSyalctqvl-------- ... delfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpeLIPA------------------GVEELLRINlsfa ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... rfpLALIFDpegve----------- ... reralseavtllvaghetVASALTWsflllshrpdwqkrvaeseeAALA------------------AFQEALRL-Yppa ...	--rlclgrdfALLEGPIVLRAFFRrf-rl ...

1cpt_ ... ah-iegydpMWIATKhadvmqigkq ... ddkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpa------------------LIPRLVDEAVRWTapv ... --hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... fq-lagkq-VVLLSGshanefffra ... sadeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRLHppl ...	--hrcvgaafAIMQIKAIFSVLLReyef- ...
1oxa_ ... vr-flgqd-AWLVTGydeakaalsd ... sadeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradps------------------ALPNAVEEILRYIapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... tr-cnggH--WIATRgqlireayed ... tsdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpe------------------RIPAACEELLRRFslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... fe-apgrv-TRYLSSqrlikeacde ... ddeniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRLWpta ...	--racigqqfALHEATLVLGMMLKhfdfe ...
1izo_A ... ar-llgkn-FICMTGaeaakvfydt ... dsrmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsr-----------------EREMFVQEVRRYYpfg ...	kghrcpgegiTIEVMKASLDFLVHqiey- ...
1dt6_A ... vy-lgmkp-TVVLHGyeavkealvd ... tleslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRFIdll ...	--rmcvgeglARMELFLFLTSILQnfklq ...
1n40_A ... vrtitgae-AWLVSSyalctqvled ... sdelfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpe------------------LIPAGVEELLRINlsf ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... lp-lprfp-LALIFDpegvegalla ... preralseavtllvaghetVASALTWsflllshrpdwqkrvaesee------------------AALAAFQEALRLYppa ...	--rlclgrdfALLEGPIVLRAFFRrfrld ...
 |

	

	

(b) after local adaptive realignment

Figure 8.1: Impact of adaptive local realignment. The figure shows portions of
an alignment of benchmark BB11007 from the BAliBASE suite, where the high-
lighted amino acids in red uppercase are from the core columns of the reference
alignment, which should be aligned in a correct alignment. (a) The alignment com-
puted by Opal using its optimal default parameter setting (VTML200, 45, 11, 42, 40)
across the sequences, with an accuracy of 89.6%. The regions of the alignment
in gray boxes are automatically selected for realignment. (b) The outcome of us-
ing adaptive local realignment, with an improved accuracy of 99.6%. The realign-
ments of the three regions use alternate parameter settings (BLOSUM62, 45, 2, 45, 42),
(BLOSUM62, 95, 38, 40, 40), and (VTML200, 45, 18, 45, 45), respectively, which increase
the accuracy of these regions.

alignment scoring function. This single parameter setting affects how residues across

a protein are aligned, and implicitly assumes a uniform mutation rate. In contrast,

the approach of this paper identifies alignment regions that may be misaligned under

a single parameter setting, and finds alternate parameter settings that may more

closely match the local mutation rate of the sequences.

We present a method that takes a given alignment and attempts to improve its

overall accuracy by replacing sections of it with better subalignments, as demon-

strated in Figure 8.1. The top alignment of the figure was computed using a single

parameter setting: the optimal default setting of the Opal aligner (Wheeler and

Kececioglu, 2007). The bottom alignment is obtained by our new method, taking

the top alignment, automatically identifying the sections in gray boxes, and realign-

ing them using alternate parameter settings, as described later in Section 8.2. This

increases the overall alignment accuracy by 10%, as most of the misaligned core

blocks (highlighted in red uppercase) are now corrected.

134

Related work

Methods that partition a set of sequences to align or realign them can be divided

in two categories, based on the type of partition. Vertical realigners cut the input

sequences into substrings, and once these shorter substrings are realigned, they stitch

their alignments together. Horizontal realigners split an alignment into groups of

whole sequences, which are then merged together by realigning between groups,

possibly using each group’s induced subalignment.

Crumble and Prune (Roskin et al., 2011) is a pair of algorithms for performing

both vertical (Crumble) and horizontal (Prune) splits on an input set of sequences.

During the Crumble stage, a set of constraints is found that anchor the input se-

quences together, and the substrings or blocks between these anchor points are

aligned. Once the disjoint blocks of the sequences are aligned, they are then fused by

aligning their overlapping anchor regions. During the Prune stage, smaller groups of

sequences are aligned that correspond to subtrees of the progressive aligner’s guide

tree. The subset of sequences in a subtree is then replaced by their alignment’s

consensus sequence in the remaining steps of progressive alignment. The original

subalignments of the groups are finally reinserted to form the output alignment.

Replacing a group of sequences by their consensus sequence during alignment re-

duces the number of sequences that are aligned at any one time. The objective for

splitting sequences both vertically and horizontally within Crumble and Prune is to

reduce time and space usage to make feasible the alignment of large numbers of long

sequences, rather than to improve alignment accuracy.

ReAligner (Anson and Myers, 1997) is a horizontal realignment method for

improving DNA sequence assembly by removing and then realigning sequencing

reads. If a read is initially misaligned in the assembly it may be corrected when the

read is removed and realigned. This realignment process is repeated over all reads

to continually refine the assembly.

Gotoh (1993) presented several horizontal methods for heuristically aligning two

multiple sequence alignments, which he called “group-to-group” alignment. This

135

could be used for alignment construction in a progressive aligner, proceeding bottom-

up over the guide tree and applying group-to-group alignment at each node, or for

polishing an existing alignment by assigning sequences to two groups and using it

to realign the groups.

AlignAlign (Kececioglu and Starrett, 2004) is a horizontal method that imple-

ments an exact algorithm for optimally aligning two multiple sequence alignments

under the sum-of-pairs scoring function with affine gap costs. This optimal group-

to-group alignment algorithm, used for both alignment construction and alignment

polishing, forms the basis of the Opal aligner (Wheeler and Kececioglu, 2007).

By comparison, adaptive local realignment is a vertical approach that aims to

improve alignment accuracy, applies to any alignment method that has tunable

parameters, and to our knowledge is the first approach to alignment that can auto-

matically adapt to varying mutation rates along a protein.

Plan of the chapter

In the next section, we describe our adaptive local realignment method, which can

be viewed as a form of local parameter advising, and discusses how it interacts with

global parameter advising. Section 8.3 experimentally evaluates our approach, and

compares it with prior methods for advising.

8.2 Adaptive local realignment

To overcome the issue of protein sequences being non-homogeneous and having re-

gions that may require different alignment parameters we have developed a method

we call adaptive local realignment. Adaptive local realignment uses some of the the

same basic principles that have been shown to work well for global parameter advis-

ing. We apply the techniques described above locally to choose the best alignment

parameters for a subset of columns of an alignment.

The adaptive local realignment method for an alignment can be broken down

into two steps: (1) choosing regions of the alignment that are correctly aligned which

136

we should save, and (2) producing a new alignment for those regions that are not

correctly aligned.

Similar to global parameter advising local realignment relies on a set of alternate

parameter choices and the accuracy estimator.

8.2.1 Identifying local realignment regions

Just as with global alignments we do not have a known reference alignment so we

cannot simply identify the alignment columns that are recovered correctly in an

input computed alignment. Therefore we are forced to use an accuracy estimator

E to define the regions of a given alignment that are going to be saved (and which

will be realigned). We calculate the estimated accuracy of a sliding window across

the alignment (see Figure 8.2a). The window size is a fraction w ≤ 1 of the total

length of the alignment. The window size w must be chosen carefully because the

accuracy estimator has features that are global calculations of an alignment. A

larger sliding window will provide more context at each position and should provide

a better estimate of accuracy. At the same time, if the window is too large there

will not be enough granularity to identify the separation points between correct and

incorrectly aligned columns. To account for very short and very long alignments a

minimum wmin and maximum wmax window size is specified.

We now have the scores for approximately 1
w

windows that overlap each column

of an alignment. We calculate a score for each column as a sum of these scores

weighted proportionally to the distance to the center column of that window (see

Figure 8.2b). We use a gamma decay distribution with a decay factor d ≤ 1 centered

on the middle column to weight the contribution of each window. As d approaches 1

a column gets equal weight from all covering windows. Conversely as it approaches

0 the score is dependent only on the window centered at that column.

We then calculate two thresholds τB and τS based on the percentage of columns

from the original alignment we would like to keep TB and the percentage of columns

we will use to seed realignment regions TS. The thresholds are set so that at least

d` TBe columns have score that are above τB, and least d` TSe columns have scores

137

barrier

Accuracy
Estimator

0.90

weighted sum

seed

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
--------------------------mtkWNYGVFFLYDVVA--Fsehhidksyn
--------------------------mnkWNYGVFFVYDVIN--Iddhylvkkds

Parameter Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

rkeyagLYHEVAQAHGVDVSQVrqMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVr--------------------------mtkWNYGVFFLYDVVA--FsehhidksynPLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVr--------------------------mnkWNYGVFFVYDVIN--IddhylvkkdsPLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

rkeyagLYHEVAQAHGVDVSQVr--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVrmtkWNYGVFFLYDVVAFsehhidksyn------------------------------PLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVrmnkWNYGVFFVYDVINIddhylvkkds------------------------------PLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

(a)

(b)

(c)

(e)

(d)

(f)

rkeyagLYHEVAQAHGVDVSQVrqMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVr--------------------------mtkWNYGVFFLYDVVA--FsehhidksynPLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVr--------------------------mnkWNYGVFFVYDVIN--IddhylvkkdsPLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

seedseed

####

####

column scores

input  
alignment

alignment window

window scores

alignment  
region

realigned  
region

{

barrier

output
alignment

barrier

Figure 8.2: The adaptive local realignment process. (a) We calculate a Facet score
for a sliding window across at the input alignment. (b) To calculate a score for each
column from the set of window scores we use a weighted sum of the values for all
windows that overlap that column. (c) Columns that a column score value greater
than τG are labeled as barriers and then columns with value less than τB are used as
seeds for realignment regions. (d) These seeds are then extended in both directions
until they reach a barrier column to define a realignment region that is extracted
from the alignment. (e) The unaligned subsequences defined by this region are then
realigned using a parameter advisor. (f) Once the most accurate realignment of the
region is found it is reinserted into the input alignment replacing the section that
was removed.

138

below τS. All columns with scores ≥ τB are labeled “barriers” and all columns with

scores ≤ τS are labeled as “seeds” (see Figure 8.2b).

To find alignment regions that will be realigned we start a region by including

a seed column. This region is then extended to include any other seed or unlabeled

column to the left and right. This expansion continues until a barrier column (or

the end of the alignment) is reached in both directions.

The barrier columns will never be included in an alignment region that will be

realigned. In this way we guarantee that at least TB percent of the columns from

the original alignment will remain, and there will always be at least one alignment

region to realign.

8.2.2 Local parameter advising on a region

During local advising we will construct a new alignment that contains all of the

columns that are surrounded by only barrier columns and more accurate alignments

of the columns covered by alignment regions (if a more accurate alignment can be

found).

For each alignment region we extract the sub-alignment in the contained columns

and calculate it’s Facet score (see Figure 8.2d). We will later compare other alter-

nate alignments with this base accuracy. The unaligned subsequences of this region

are then collected. This set of unaligned sequences becomes the input to parameter

advising.

We use same parameter advising method described in Section 1.2 and Figure 1.3

with one exception. The Opal aligner has 5 tunable parameters: the replacement

matrix as well as two internal and two terminal gap costs (we describe them in detail

in Section 8.3). For those regions that do include the alignment terminals (the first

or last column of the input alignment), the terminal gap penalties are replaced with

the corresponding internal gap cost. For those regions that do include terminals we

use the terminal gap penalty only on the one side that is terminal in the context

of the global alignment. Note that an alignment region as we have defined it will

never include both terminals.

139

We then compare the advisors choice with the original alignment of this region,

if the accuracy of the new alignment is higher we remove the columns covered by the

alignment region from the input alignment and replace them with the new alignment

of this region (see Figure 8.2f).

As a final step we compare the accuracy of the new alignment, with the realign-

ments in the alignment regions, to the input alignment. The more accurate global

alignment is returned.

8.2.3 Iterative local realignment

Once we have a new global alignment of the input sequences we can repeat the

process to continue to refine the alignment. Using the same methods described

earlier we compute the Facet score on windows of this new alignment, combine these

to get column scores, and define alignment regions for which we will use parameter

advising to realign. We iterate this process until a user defined maximum number

of iterations is reached. Note that the local advising procedure may reach a point

where none of the misaligned regions are replaced, even though continuing iteration

will not effect the output we stop iterating when this happens to reduce the running

time.

8.2.4 Combining local with global advising

Local advising is a method for improving the accuracy of an existing alignment. It

has been shown previously that using parameter choices other than the default can

greatly increase the alignment accuracy for some inputs. We can use global advising

to find a more accurate starting point for adaptive local realignment.

Local and global advising can be combined in two ways.

(1) Local advising on all global alignments: using adaptive local re-

alignment on each of the alternate alignments produced within global

parameter advising then choosing among all 2|P | alternate alignments

(|P | unaltered global alignments and |P | locally advised alignments),

140

and

(2) Local advising on best global alignment: choosing the best global

alignment then using adaptive local realignment to boost it’s accuracy.

We will compare both methods for combining local and global advising as well

as local advising on the default alignment in the next section.

8.3 Assessing local realignment

We evaluate the performance of adaptive local realignment and its use in combina-

tion with global advising through experiments on a collection of protein multiple

sequence alignment benchmarks. A full description of the benchmarks and universe

of parameters used for parameter advising can be found in Kececioglu and DeBlasio

(2013) and is briefly described here.

The benchmark suites used in our experiments consist of reference alignments

of proteins that are largely induced by structurally aligning their known three-

dimensional structure. In particular, we use the BENCH suite of Edgar (2009) (which

is a combination of the BAliBASE (Bahr et al., 2001), PREFAB (Edgar, 2004a),

OxBench (Raghava et al., 2003), and SABRE (Van Walle et al., 2005) databases),

supplemented by a selection from the PALI suite of Balaji et al. (2001). The full

benchmark collection we use consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-

represented in this collection. To correct for this bias towards easy to align bench-

marks when evaluating average advising accuracy, we binned the 861 benchmarks

by hardness, which we measured by the true accuracy of the alignment of the bench-

mark’s sequences using the multiple alignment tool Opal under the optimal default

parameter setting. We then divided the the full range [0, 1] of accuracies into 10

bins, where bin b for b = 1, ..., 10 contains hardness interval
(
(b − 1)/10, b/10

]
,

and has 12, 12, 20, 34, 26, 50, 62, 74, 137, and 434 benchmarks respectively. We

report the average accuracy across bins rather than across benchmarks. This means

that the average accuracy of alignments using the Opal default parameter settings is

141

near 50%. Even though the binning is based on the Opal default alignments, most

other standard aligners have default accuracy near 50%: Clustal Omega (Sievers

et al., 2011, 47.3%), Muscle (Edgar, 2004a, 48.4%), MAFFT (Katoh et al., 2005,

51.0%). This is not to say for instance that MAFFT is necessarily more accurate than

Clustal Omega, if you bin based on any aligner other than Opal you would get a

completely new ordering. DeBlasio and Kececioglu (2016) shows that for the task

of parameter advising many of the top aligners performance nearly equally well and

our choice to use Opal is made based on the fact that it has the highest advis-

ing accuracy in our tests. The methodology presented here is general and can be

implemented for any other aligner.

We developed a universe of alignment parameter settings U by enumerating

the tunable alignment parameters within the Opal aligner and enumerated values

from within the reasonable range of those parameters. In particular the tunable

parameters for Opal are represented as a 5-tuple (σ, λI , λT , γI , γT) which represent

the replacement matrix (σ) as well as the the internal and terminal gap open (λ)

and extension costs (γ). For the substitution matrix we selected 3 matrices form the

BLOSUM (Henikoff and Henikoff, 1992) and VTML (Müller et al., 2002) families, three

choices each for the internal and external gap open costs, three choices of internal

gap extension cost, and two choices of terminal gap extension costs. We then took

the cross product of the choices for each of the parameters to generate a universe of

162 parameter settings.

We use 12-fold cross validation to examine the increase in accuracy gained using

local advising both with and without the addition of global advising. We construct

training and testing subsets of the alignment benchmarks by evenly and randomly

distributed benchmarks into twelve groups for each hardness bin; we then formed

twelve splits of the entire collection of benchmarks into a training class and a testing

class, where each split placed one group in a bin into the training class and the other

eleven groups in the bin into the training class; finally, for each split we generated a

training set and testing set of examples alignments as follows: for each benchmark

B in a training or testing class, we generate |U | example alignments in the respective

142

training or testing set by running Opal on B with each parameter in U . An estimator

learned on the examples from a training set was evaluated on examples from the

corresponding testing set. The results we reported are averages over twelve folds,

where each fold is one of these pairs of associated training and testing sets. (Note

that across twelve folds, every example is tested on exactly once.)

We trained the estimator coefficients for Facet using the difference fitting method

described in Chapter 2 on the training sets described above. We found that there

was very little change in coefficients between the training folds so for ease of ex-

perimentation we use the estimator coefficients that are release with the newest

version Facet which were trained on all available benchmarks.

We examined several settings for the tunable parameters of the local realignment

method: estimator window size percentage w (10%,20%,30%,...,90%), minimum

window sizes wmin (5,10,20,30), minimum window sizes wmax (30,50,75,100,125),

good and bad column label percentages BG, BB (5%,10%,20%,30%,...,70%), and

gamma decay value d (0.5,0.66,0.9,0.99). We used the performance on training

benchmarks described above to find the combination of these settings that gave the

highest improvement in accuracy when local advising was applied to the default

alignments from Opal. We found that using w = 30%, wmin = 10, wmax = 30,

BG = 10%, BB = 30%, and d = 0.9 provided the highest increase for the training

benchmarks and these are the settings we use through out the experimental results.

We also iterate the local advising step five times and use this for all experiments

other than the comparison to TCS in Section 8.3.3, full details why we used five

iterations are shown in Section 8.3.4.

8.3.1 Effect of local realignment across difficulty bins

Figure 8.3 shows the alignment accuracy across difficulty bins for default align-

ments from Opal, local advising on these default alignments, global advising alone,

and local combined with global alignment. Here the combination method uses lo-

cal advising on all alternate alignments within global advising. The oracle set of

cardinality k = 10 was used for both global and local advising.

143

Local advising greatly improves the alignment accuracy of default alignments

(left two bars in each group). In the two most difficult benchmark bins (to the

left of the figure) using local advising increases the average accuracy by 11.5% and

9.1% respectively. The accuracy increases on all bins. Overall using local advising

increases the accuracy of the default alignments by and average of 4.5% across bins.

Combining local and global advising greatly improves the accuracy over either of

the methods individually. This is most pronounced for the hardest to align bench-

marks. For the bottom two bins using both parameter advising and adaptive local

realignment increases the accuracy by 23.0% and 25.6% accuracy over using just the

default parameter choices. Additionally, using adaptive local realignment increases

the accuracy by 5.9% accuracy on the bottom most bins over using parameter ad-

vising alone. On average thats an 8.9% increase in accuracy over all bins by using

the combined procedure over using just the default parameter choice and a 3.1%

increase over using only parameter advising.

8.3.2 Varying advising set cardinality

In previous sections we focused on using advising sets of cardinality k = 10. Because

an alignment is produced for each region of local realignment for each parameter

choice in the advising set it may be desirable to use a smaller set to reduce the

running time of local (or or global) advising. We produced oracle advising sets for

cardinalities k = 2...15 and used them to test the effect of local advising both alone

and in combination with global advising. Figure 8.4 shows the average advising

accuracies of using advising sets of increasing cardinalities under the 3 conditions

described above as well as the combination of local with global advising where the

local advising step is only performed on the single best alignment identified by

global advising. The cardinality of the set used for both parameter advising and

local realignment is shown on the horizontal axis, while the vertical axis shows the

alignment accuracy of the produced alignments averaged first within difficulty bins

then across bins.

The accuracy of alignments produced by all four methods shown eventually

144

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Benchmark	Bins	

			Default	alignment	
			Local	advising	only	
			Global	advising	only	
			Local	combined	with	global	advising	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Average	

Figure 8.3: Accuracy of the default alignment, local realignment of the
default alignment, parameter advising, and parameter advising with lo-
cal realignment within difficulty bins. In the bar chart on the left the hori-
zontal axis shows all ten benchmarks bins, and the vertical bars show the accuracy
averaged over just the benchmarks in that bin. The accuracy of the default align-
ment and parameter advising using an oracle set of cardinality k = 10, before local
realignment is shown as well as the application of local realignment to both results.
The car chart on the right shows the accuracy uniformly averaged over the bins.

145

reaches a plateau where adding additional parameters to the advising set no longer

increases the alignment accuracy. This plateau is reached at cardinality k = 10

when local realignment is applied to the default alignments and at k = 6 for param-

eter advising with and without local realignment, but this plateau is higher for the

combined methods.

Across all cardinalities using local combined with global advising improves align-

ment accuracy by nearly 4% on average.

The results above give average advising accuracy uniformly weighted across bins.

We now report average advising accuracy uniformly weighted across benchmarks.

Using its default parameter choice the Opal aligner achieves accuracy 80.4%. Ap-

plying both local and global advising at cardinality k = 10, this increases to 83.1%

(performing local advising on all global alternate alignments). Using only local or

global advising achieves accuracy 82.1% or 81.8% respectively. At k = 5 the ac-

curacy of using local and global advising is 82.7%. By comparison, the average

accuracy of other standard aligners on these benchmarks is: Clustal Omega, 77.3%;

Muscle, 78.09%; MAFFT, 79.38%.

8.3.3 Comparing estimators for local advising

We have shown previously that the Facet estimator has the best performance for

the task of global advising compared to the other accuracy estimators available

(see Kececioglu and DeBlasio, 2013; DeBlasio and Kececioglu, 2016). Figure 8.5

shows the average accuracy of local advising on default alignments using both Facet

and TCS (the next best estimator for advising) using advisor sets of cardinality

k = 2...15. We found that using TCS for local advising greatly increased the running

time because it is an additional system call and additional file IO. Because of the

additional computational requirements we did not iterate the local advising for either

estimator. Using TCS for local advising gives an increase in accuracy of less than

half that of Facet.

146

48%	

50%	

52%	

54%	

56%	

58%	

60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Advisor	Set	Cardinality	

Local	combined	with	global	advising	
														Local	advising	on	all	gloabl	
														Local	advising	on	best	global	
									Global	advising	only	
									Local	advising	on	default	

Figure 8.4: Advising accuracy using various methods versus set cardinality. This
figure compares the accuracy of alignments produced by local advising on the align-
ment produced using the Opal default parameter settings, global advising alone, and
two variants on combining local and global advising. The horizontal axis represents
and increasing oracle advising set cardinality used for both parameter advising and
local realignment. The vertical axis shows the accuracy of the alignments produced
by each of the advising methods averaged across difficulty bins.

50%	

51%	

52%	

53%	

54%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Advisor	Set	Cardinality	

 Local realignment (Facet)
 Local realignment (TCS)

Figure 8.5: Accuracy of the default alignment and local realignment using TCS and
Facet with various advisor set cardinalities. This figure compares the accuracy of
alignments produced by the Opal default parameter settings applying local realign-
ment using either the TCS or Facet estimator. The horizontal axis represents and
increasing oracle advising set cardinality used for local realignment. The vertical
axis shows the accuracy of the alignments produced by each of the advising methods
averaged across difficulty bins.

147

8.3.4 Effect of iterating local realignment

The local advising process can be considered a refinement step for multiple sequence

alignment. To continue refining the alignment we can iterate the local advising

procedure (see Section 8.2.3). Iterating local advising should eventually reach some

convergence in the alignment where you’re no longer improving the result (i.e. the

alignment regions are not being changed) or even worse you start deteriorating the

result due to some noise in the accuracy estimator. To find the optimal iteration

limit we ran all iteration limits from 1 to 25. We found that the peak accuracy on

training benchmarks was at 5 iterations, and we use that for all other experiments

shown in this chapter (other than those in Section 8.3.3). The table below shows

the average accuracy of using local adaptive realignment on the default alignment

with various number of iterations.

Iterations 1 2 3 4 5 10 15 25

Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%

Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

8.3.5 Summarizing the effect of adaptive local realignment

Table ?? summarizes how adaptive local realignment behaves across difficulty bins

when used to modify alignments produced using the default parameter setting in

Opal. The first two rows show how many of the 861 benchmarks are in each bin,

as well as how many of them had at least one realignment region where the advisor

chose to replace the global alignment. The fourth row shows the average number

of Bad in a benchmark; on average about 2 regions were realigned for each default

alignment. The last two rows summarize the percentage of the original columns

those Bad regions covered, and how many of the columns from the original align-

ment ended up being replaced. In the easiest-to-align benchmark bin only 47% of

the alignment columns were altered, while in the rest of the bins over 60% of the

alignment columns were improved.

148

T
ab

le
8.

1:
S
u
m

m
ar

y
of

L
o
ca

l
R

ea
li
gn

m
en

t
on

D
ef

au
lt

A
li
gn

m
en

ts
B

in
1

2
3

4
5

6
7

8
9

1
0

O
v
e
r
a
ll

T
o
ta

l
n
u

m
b

e
r

o
f

b
e
n

c
h

m
a
r
k
s

1
2

1
2

2
0

3
4

2
6

5
0

6
1

7
4

1
3
7

4
3
4

8
6
1

B
e
n

c
h

m
a
r
k
s

u
n

c
h

a
n

g
e
d

4
5

4
7

7
1
6

1
6

1
3

2
2

8
2

1
7
6

B
e
n

c
h

m
a
r
k
s

m
o
d

ifi
e
d

b
y

a
d

a
p

ti
v
e

lo
c
a
l

r
e
a
li

g
n

m
e
n
t

8
7

1
6

2
7

1
9

3
4

4
6

6
1

1
1
5

3
5
2

6
8
5

P
e
r
c
e
n
ta

g
e

o
f

b
e
n

c
h

m
a
r
k
s

a
lt

e
r
e
d

6
7
%

5
8
%

8
0
%

7
9
%

7
3
%

6
8
%

7
4
%

8
2
%

8
4
%

8
1
%

8
0
%

A
v
e
r
a
g
e

B
a
d

r
e
g
io

n
s

p
e
r

b
e
n
c
h

m
a
r
k

1
.9
2

2
.1
7

2
.5
0

1
.8
8

2
.2
3

2
.1
4

2
.3
1

2
.1
6

2
.4
8

2
.1
9

2
.2
3

A
v
e
r
a
g
e

p
e
r
c
e
n
ta

g
e

o
f

o
r
ig

in
a
l

c
o
lu

m
n

r
e
a
li

g
n

e
d

7
5
%

7
3
%

7
6
%

7
0
%

7
5
%

7
7
%

7
4
%

7
3
%

7
5
%

7
2
%

7
3
%

A
v
e
r
a
g
e

p
e
r
c
e
n
ta

g
e

o
f

o
r
ig

in
a
l

c
o
lu

m
n

r
e
p

la
c
e
d

6
4
%

6
0
%

6
8
%

6
0
%

6
6
%

7
2
%

6
5
%

6
3
%

6
4
%

4
7
%

5
7
%

149

8.3.6 Running time

As currently implemented in Opal local advising does not take advantage of the

independence of the calls to the aligner in the parameter advising step and running

them in parallel. Therefore we see a large increase in time consumption when

generating locally advised alignments. In particular the average time for computing

an alignment using the default global parameter setting goes from about 8 seconds

to just over 36 seconds using an advisor set cardinality of k = 10. When iterating

the local advising step 5 times we see the average running time increase to 110

seconds.

In contrast global advising exploits the independence of the aligner on different

parameter settings. The running time for advisor set cardinality k = 10 for global

advising alone is around 33 seconds, much less than the 10-fold increase to be ex-

pected if advising was not done in parallel. Even though global advising is done

in parallel, local advising is not; the average running time over all benchmarks in-

creases to 68 and 178 seconds for combining local and global advising, performing

local advising on all global alignments with and without iteration, respectively.

8.3.7 Local and global advising in Opal

The development trunk of the Opal aligner includes the ability to perform adaptive

local realignment both with and without parameter advising. To achieve the same

results shown here the following commands were used to run the aligner:

(A) Parameter advising with local realignment on all

java opal.Opal --in <input file>\
--facet structure <structure file>\
--configuration file <parameter set>\
--out best <output file>

(B) Parameter advising with local realignment on single

java opal.Opal --in <input file>\
--facet structure <structure file>\

150

--configuration file <parameter set>\
--out prerealignment best realignment\

<output file>

(C) Parameter advising without local realignment

java opal.Opal --in <input file>\
--facet structure <structure file>\
--advising configuration file <set>\
--out best <output file>

(D) Default alignment with local realignment

java opal.Opal --in <input file>\
--facet structure <structure file>\
--realignment configuration file <set>\
--out <output file>

(E) Default alignment without local realignment

java opal.Opal --in <input file>\
--out <output file>

Summary

We have presented adaptive local realignment, to our knowledge the first method

that demonstrably boosts protein multiple sequence alignment accuracy by locally

realigning regions that may have distinct mutation rates using different aligner pa-

rameter settings. Applying this new method alone to alignments initially computed

using a single optimal default parameter setting already improves alignment accu-

racy significantly. When combined with methods to select an initial non-default

parameter setting for the particular input sequences through global parameter ad-

vising, this new local parameter advising method greatly improves accuracy even

further. We have also made available a tool that performs adaptive local realignment

with the Opal aligner.

151

CHAPTER 9

Predicting Core Columns

Overview

In a computed multiple sequence alignment, the coreness of a column is the fraction

of its substitutions that are in so-called core columns of the unknown reference

alignment of the sequences, where the core columns of the reference alignment are

those that are reliably correct. In the absence of knowing the reference alignment,

the coreness of a column can only be estimated. We develop for the first time a

column coreness estimator for protein multiple sequence alignments.

Our approach to predicting coreness is similar to nearest-neighbor classification

from machine learning, except we transform nearest-neighbor distances into a core-

ness estimate using a regression function, and we automatically learn an appropriate

distance function through a new optimization formulation that solves a large-scale

linear programming problem. We apply our coreness estimator to improving param-

eter advising, the task of choosing good parameter values for an aligner’s scoring

function, and show that our estimator strongly outperforms others from the litera-

ture, providing a significant boost in advising accuracy.

9.1 Introduction

The accuracy of a multiple sequence alignment computed on a benchmark set of

input sequences is usually measured with respect to a reference alignment that

represents the gold-standard alignment of the sequences. For protein sequences,

reference alignments are typically determined by structural superposition of the

known three-dimensional structures of the proteins in the benchmark. The accuracy

of a computed alignment is then defined to be the fraction of substitutions of pairs

152

of residues in the so-called core columns of the reference alignment that are also

present in columns of the computed alignment. Core columns represent those in the

reference that are deemed to be reliable, and are columns containing a residue from

every input sequence such that the pairwise distances between these residues in the

structural superposition of the proteins are all within some threshold (typically a few

angstroms). In short, given a known reference alignment whose columns are labeled

as either core or non-core, we can determine the accuracy of any other computed

alignment of its proteins by evaluating the fraction of substitutions in these core

columns that are recovered. For a given column in a computed alignment, we can

also define the coreness value of the column to be the fraction of its substitutions

that are in core columns of the reference alignment. A coreness value of 1 means the

column of the computed alignment corresponds to a core column of the reference

alignment.

When aligning sequences in practice, obviously such a reference alignment is

not known, and the accuracy of the computed alignment, or the coreness of its

columns, must be estimated. A good accuracy estimator for computed alignments

is extremely useful. It can be leveraged to pick among alternate alignments of the

same sequences the one of highest estimated accuracy, for example, to choose good

parameter values for an aligner’s scoring function, called parameter advising ; or

to select the best result from a collection of different aligners, yielding a natural

ensemble aligner that can be far more accurate than any individual aligner in the

collection.

Similarly, a good coreness estimator for columns in a computed alignment can

be used to mask out unreliable regions of the alignment before computing an evo-

lutionary tree, or to improve an alignment accuracy estimator by concentrating its

evaluation function on columns of higher estimated coreness, thereby boosting the

performance of parameter advising. In fact, in principle a perfect coreness estimator

would itself yield an ideal accuracy estimator.

In this chapter, we develop for the first time a column-coreness estimator for

protein multiple sequence alignments. Our approach to predicting coreness is similar

153

in some respects to nearest-neighbor classification from machine learning, except

we transform nearest-neighbor distance into a coreness estimate using a regression

function, and automatically learn an appropriate distance function through a new

optimization formulation that solves a large-scale linear programming problem. We

evaluate the performance of our new coreness estimator by applying it to the task

parameter advising in multiple sequence alignment.

9.1.1 Related work

To our knowledge, this is the first fully general attempt to directly estimate the core-

ness of columns in computed protein alignments. In the literature, the GUIDANCE

tool (Sela et al., 2015) gives reliability values for alignment columns, which they eval-

uate by measuring the classification accuracy of predicting totally correctly aligned

core columns from reference alignments, though they do not attempt to relate re-

liability to coreness. GUIDANCE also requires alignments to contain at least four

sequences, which limits the alignment benchmarks that can be considered. Tools

are also available that assess the quality of columns in a multiple alignment, and

can be categorized into those that compute a column quality score which can be

thresholded, and those that only identify columns that are unreliable (for removal

from further analysis). The popular quality score tools are TCS (Chang et al., 2014),

ZORRO (Wu et al., 2012), and Noisy (Dress et al., 2008); these can be used to

modify the feature functions in an accuracy estimator such as Facet (DeBlasio

and Kececioglu, 2014b), as we later propose in Section 9.3.2. Tools that simply

mask unreliable columns of an alignment include ALISCORE (Kück et al., 2010),

GBLOCKS (Castresana, 2000), and TrimAL (Capella-Gutierrez et al., 2009).

We focus on comparing our coreness estimator to TCS and ZORRO, as these are

the most recent tools that provide quality scores, as opposed to simply masking

columns. Furthermore, of the above tools, ALISCORE, GBLOCKS and GUIDANCE have

been shown to be dominated by ZORRO, while Noisy in turn has been shown to be

dominated by GUIDANCE.

154

Plan of the chapter

In the next section, we present our method for learning a coreness estimator. Sec-

tion 9.3 explains how we use predicted coreness to improve accuracy estimation for

protein alignments. Section 9.4 then evaluates our approach to coreness prediction

by applying the improved accuracy estimator to alignment parameter advising.

9.2 Learning a coreness estimator

To describe how we learn a column coreness estimator, we first discuss our rep-

resentation of alignment columns, and our grouping of consecutive columns into

window classes ; we then present our regression function for estimating coreness,

which transforms a distance to a window class into a coreness value; and finally, we

describe how we learn this window distance function by solving a large-scale linear

programming problem.

9.2.1 Representing alignment columns

We want to represent a multiple alignment column in a form that captures the asso-

ciation of amino acids and predicted secondary-structure types, but is independent

of the number of sequences in the alignment. This is necessary for the labeled col-

umn examples in our training set to be useful for estimating the coreness of columns

that come from other alignments with arbitrary numbers of sequences.

Let Σ be the 20-letter amino acid alphabet, and Γ = {α, β, γ} be the secondary-

structure alphabet, corresponding respectively to types α-helix, β-strand, and other

(also called coil). We encode the association of an amino acid c ∈ Σ with its

predicted secondary structure type s ∈ Γ using an ordered pair (c, s) that we call a

state, from the set Q = (Σ×Γ) ∪ {ξ}. Here ξ = (ε, ε) is the gap state, where ε 6∈ Σ

is the alignment gap character (often displayed by the dash symbol ‘-’).

We represent a multiple alignment column as a distribution over the set of

states Q, which we call its profile (mirroring standard terminology (e.g., Durbin

et al., 1998, p. 101)). We denote the profile C for a given column by a function C(q)

155

on states q ∈ Q satisfying C(q) ≥ 0 and
∑

q∈QC(q) = 1. For a column (c1c2 · · · ck)
in a multiple alignment of k sequences, with associated predicted secondary struc-

ture types (s1 · · · sk), where for a gap ci = ε the associated secondary structure type

is also si = ε, its profile C is,

C(q) :=
1

k

∣∣∣{i : (ci, si) = q
}∣∣∣ .

In other words, C(q) is the relative frequency of state q in the column.

We generalize this to secondary structure predictions that for amino acid ci give

confidences pi(α), pi(β), pi(γ) that the amino acid is in each of the three secondary

structure types (where these confidences sum to 1), as follows. For state q = (a, s) 6=
ξ, profile C is then,

C(q) :=
1

k

∑
1≤i≤k : ci=a

pi(s) .

In other words, C(q) is now the normalized total confidence in state q 6= ξ. For gap

state q = ξ, value C(ξ) is the same as before.

9.2.2 Classes of column windows

The ground truth of whether a column in a reference alignment is core or non-core

depends on whether the residues of the proteins in that column are sufficiently close

in space in the structural superposition of the folded 3-dimensional structures of the

proteins. This folded structure at a residue is not simply a function of the amino

acid of the residue itself, or its secondary structure type, but is also a function of

the nearby residues in the protein. Consequently, to estimate the coreness of a given

column in a computed alignment, we need additional contextual information from

nearby columns of the alignment.

We gather this additional context around a given column by forming a win-

dow of consecutive columns centered on the given column. Formally, a column

window W of width w ≥ 1 is a sequence of 2w + 1 consecutive column pro-

files W−w · · ·W−1W0W+1 · · ·W+w centered around profile W0.

We define the following set of window classes C, depending on whether the

columns in a labeled training window are known to be core or non-core with respect

156

to their reference alignment. We denote a column labeled core by C, and a column

labeled non-core by N. For window width w= 1, which we use in our experiments,

such labeled windows can be described by strings of length 3 over alphabet {C, N}.
The three classes of core windows are CCC, CCN, NCC, and the three classes of non-core

windows are CNN, NNC, NNN. (A window is considered core or non-core depending on

the label of its center column.) Together these six classes comprise set C. We call the

five classes with at least one core column C in the window as structured classes, and

the one class with no core columns the single unstructured class, which we denote

by the symbol ⊥ = NNN.

Reference alignments explicitly label their columns as core or non-core. For

computed alignments, which have a known reference alignment, we label a column

as core or non-core depending on whether the true coreness value for the column is

above a fixed threshold.

9.2.3 The coreness regression function

We learn an estimator for the coreness of a column by fitting a regression function

that first measures the similarity between a window around the column and training

examples of windows with known coreness, and then transforms this similarity into

a coreness value.

We express the similarity between windows in terms of the similarity of their cor-

responding columns. To measure the similarity between columns we use a distance

function d on pairs of column profiles A,B of the form,

d(A,B) :=
∑
p,q ∈Q

A(p) B(q) σ(p, q) ,

where σ(p, q) is a substitution score that measures the dissimilarity between the pair

of states p, q.

We extend this to a distance d on pairs of windows V = V−w · · ·Vw and

W = W−w · · ·Ww by,

d(V,W) :=
∑

−w≤ i≤+w

di(Vi,Wi) ,

157

where the di are positional distance functions on column profiles. Function di is given

by its positional substitution scores σi(p, q). The positional σi can score dissimilarity

higher at positions i at the center of the window, and lower toward the edge of the

window.

Finally, we extend this to class-specific window distance functions dc that are

specific to each window class c ∈ C−{⊥}. Function dc is given by its class-specific

positional profile distance functions dc,i, which are in turn given by class-specific

positional substitution scores σc,i.

The regression function that estimates the coreness of a column first forms a

window W centered on the column, and then performs the following. To transform

a distance to coreness we use two different functions: function fcore for core classes,

and function fnon for non-core classes.

(1) (Find distance to closest class) Across all labeled training windows, in

all structured window classes, find the training window that has smallest

class-specific distance to W . Call this closest window V , its class c, and

their distance δ = dc(V,W).

(2) (Transform distance to coreness) If class c is a core class, return coreness

value fcore(δ). Otherwise, return value fnon(δ).

We next explain how we efficiently find distance δ, and then describe the transform

functions f .

Finding the distance to a class

To find the distance of a window W to a class c, we need to find the nearest neighbor

of W among the set of training windows Tc in class c, namely argminV ∈Tc
{
dc(V,W)

}
.

Finding the nearest neighbor through exhaustive search by explicitly evaluat-

ing dc(V,W) for every window V can be expensive when Tc is large (and cannot

be avoided in the absence of exploitable properties of function dc).

When the distance function is a metric, for which the key property is the trian-

gle inequality (namely that d(x, z) ≤ d(x, y) + d(y, z) for any three objects x, y, z),

158

faster nearest neighbor search is possible. In this situation, in a preprocessing step

we can first build a data structure over the set Tc, which then allows us to per-

form faster nearest neighbor searches on Tc for any query window W . One of the

best data structures for nearest neighbor search under a metric is the cover tree

of Beygelzimer et al. (2006). Theoretically, cover trees permit nearest neighbor

searches over a set of n objects in O(log n) time, after constructing a cover tree in

O(n log n) time, assuming that the intrinsic dimension of the set under metric d

has a so-called bounded expansion constant (Beygelzimer et al., 2006). (For actual

data, the expansion constant can be exponential in the intrinsic dimension.) In our

experiments, for nearest neighbor search we use the recently-developed dispersion

tree data structure of Woerner and Kececioglu (2016), which in extensive testing on

scientific data is significantly faster in practice than cover trees.

We build a separate dispersion tree for each structured window class c ∈ C−{⊥}
over its training set Tc using its distance function dc, in a preprocessing step. To

find the nearest neighbor to window W over all training windows T =
⋃
c Tc, we

then perform a nearest neighbor search with W in each class dispersion tree, and

merge these |C|−1 search results by picking the one with smallest distance to W .

Transforming distance to coreness

We use a sigmoid function to transform nearest neighbor distance into a coreness

value. Once we have learned the distance functions dc, as described in Section 9.2.4,

we fit the transform function to empirical coreness values measured at the distances

observed for example windows from our set of training windows, as follows. We

sort the examples by their observed nearest neighbor distance, and at each observed

distance δ, we collect the m adjacent examples whose distance is below δ, and the

m adjacent examples above δ. We then compute the average true coreness value of

these 2m+1 examples, and assign this average true coreness value to distance δ. A

sigmoid curve is then fit to these pairs of average true coreness and observed nearest

neighbor distance values. This fitting process is performed separately for example

windows from core classes, and non-core classes.

159

The particular sigmoid that we fit is the logistic function. The general form of

the logistic function f that we use is,

f(x) := ` + (u−`) 1

1 + eax+b
,

with four parameters a, b, `, u, where ` and u are respectively the minimum and

maximum average true coreness values observed for the examples, and a and b are

shape parameters. We use the curve fitting tools in SciPy (Jones et al., 2001)

(which are a wrapper for MINPACK (Moré et al., 1984)) to find values for the shape

parameters a, b that best fit the data.

We separately fit logistic functions fcore(δ) and fnon(δ), with their own parameter

values a, b, `, u, to data from the core and non-core classes, respectively. For func-

tion fcore, shape parameter a is positive (so coreness is decreasing in the distance δ

to a core class); for fnon, parameter a is negative (so coreness is increasing in the

distance δ from a non-core class). As Figure 9.1 in Section 9.4.1 later shows, these

logistic transform functions fit actual coreness data remarkably well.

9.2.4 Learning the distance function by linear programming

We now describe the linear program used to learn the distance function on column

windows. The linear program learns a different, class-specific, distance function dc

for each window class c ∈ C. These distance functions dc are made commensurate

between classes by a final rescaling step after solving the linear program.

Again we divide the window classes C into two categories: the structured classes,

containing windows centered on core columns, or centered on non-core columns

that are flanked on at least one side by core columns; and the unstructured class,

containing windows of only non-core columns. We again denote this unstructured

class of completely non-core windows by ⊥ ∈ C.
In principle, the linear program tries to find distance functions dc that would

make the following “conceptual” nearest neighbor classifier accurate. (Note we are

not actually learning such a classifier.) This conceptual classifier forms a window W

centered on the column to be classified, and first finds the nearest neighbor to W over

160

all structured classes C−{⊥} in the training set using their corresponding distance

functions dc. If the distance to this nearest neighbor is at most a threshold τ , the

central column of window W is declared “core” or “non-core” depending on whether

this nearest structured class c is core or non-core. Otherwise, the nearest neighbor

distance exceeds threshold τ , the window is deemed to be in the unstructured non-

core class ⊥, and its central column is declared “non-core.” The key aspect of

this conceptual nearest neighbor classifier is that it can recognize a completely non-

core window W from class ⊥, without actually having any examples in its training

set that are close to W . This is critical for our coreness estimation task, as the

set of possible windows from the unstructured class ⊥ is enormous and probably

lacks any recognizable structure, which makes identifying them through having a

near neighbor in the training set essentially hopeless. On the other hand, identifying

windows from the structured classes is possible by having sufficiently many examples

in the training set. The following linear program learns both distance functions dc

and such distance thresholds τc.

To construct the linear program, we partition the training set T of labeled

windows by window class: subset Tc ⊆ T contains all training windows of class c ∈ C.
We then form a smaller training sample Sc ⊆ Tc for each class c by choosing a random

subset of Tc with a specified cardinality |Sc|.
The constraints of the linear program fall in several categories. For a sample

training window W ∈ Sc, we identify other windows V ∈ Tc from the same class c

in the full training set that are close to W (under a default distance d̃c). We call

these close windows V from the same class c, targets. Similarly for W ∈ Sc, we

identify other windows U ∈ Tb from a different class b 6= c in the full training set

that are also close to W (under d̃b). We call these other close windows U from a

different class b, impostors. (This parallels the terminology of Weinberger and Saul

(2009).) More formally, the neighborhood Nc(W, i) for a structured class c ∈ C−{⊥}
denotes the set of i-nearest-neighbors to W (not including W) from training set Tc

under the class-specific default distance function d̃c. (The default distance function

that we use in our experiments is described in Section 9.4.1.) The constraints of

161

the linear program find distance functions that for a sample window W ∈ Sc, pull

in targets V ∈ Nc(W, i) by making dc(V,W) small, and push away impostors U ∈
Nb(W, i) for b 6= c by making db(U,W) large.

The neighborhoods N (W, i) that give the sets of targets and impostors for the

linear programming formulation are defined with respect to default distance func-

tions d̃, as mentioned above. These neighborhoods really should be defined with

respect to the learned distance functions dc, but obviously they are not available

until after the linear program is solved. We address this discrepancy by iteratively

solving a series of linear programs. The first linear program at iteration 1 defines

neighborhoods with respect to distance functions d(0) = d̃, and its solution yields

the new functions d(1). In general, iteration i uses the previous iteration’s func-

tions d(i−1) to formulate a linear program whose solution yields the new distance

functions d(i). This process is repeated for a fixed number of iterations, or until the

change in the distance functions is sufficiently small.

The target constraints for each sample window W ∈ Sc from each structured

class c ∈ C − {⊥}, and each target window V ∈ Nc(W,k), are,

eVW ≥ dc(V,W) − τc , (9.1)

eVW ≥ 0 , (9.2)

where eVW is a target error variable and τc is a threshold variable. In the above,

quantity dc(V,W) is a linear expression in the substitution score variables σc,i(p, q),

so constraint (9.1) is a linear inequality in all these variables. Intuitively, we

would like condition dc(V,W) ≤ τc to hold (so W will be considered to be

in its correct class c); in the solution to the linear program, variable eVW will

equal max
{
dc(V,W) − τc, 0

}
, the amount of error by which this ideal condition is

violated.

In the target neighborhood Nc(W,k) above, parameter k specifies the number of

targets for each sample window W . In our experiments we use a small number of

targets, with k = 2 or 3.

The impostor constraints for each sample window W ∈ Sc from each structured

162

class c ∈ C − {⊥}, and each impostor window V ∈ Nb(W, `) from each structured

class b ∈ C − {⊥} with b 6= c, are,

fW ≥ τb − db(V,W) + 1 , (9.3)

fW ≥ 0 , (9.4)

where fW is an impostor error variable. Intuitively, we would like condi-

tion db(V,W) > τb to hold (so W will not be considered to be in the incorrect

class b), which we can express by db(V,W) ≥ τb + 1 using a margin of 1. (Since

the scale of the distance functions is arbitrary, we can always pick a unit margin

without loss of generality.) In the solution to the linear program, variable fW will

equal maxb∈C−{⊥}, V ∈Nb(W,`)
{
τb − db(V,W) + 1, 0

}
, the largest amount of error by

which this condition is violated for W across all b and V .

We also have impostor constraints for each completely non-core window W ∈ T⊥,

and each core window V ∈ Nb(W, `) from each structured core class b (as we do not

want W to be considered core), which are of the same form as inequalities (9.3)

and (9.4) above.

In the impostor neighborhood Nb(W, `) above, parameter ` specifies the number

of impostors for each sample window W . We use a large number of impostors ` ≈
100 in our experiments. Having a single impostor error variable fW per sample

window W (versus a target error variable eVW for every W and target V) allows us

to use a very large ` while still keeping the number of variables in the linear program

tractable.

The triangle inequality constraints, for each structured class c ∈ C − {⊥}, each

window position −w ≤ i ≤ w, and all states p, q, r ∈ Q (including the gap state ξ),

are,

σc,i(p, r) ≤ σc,i(p, q) + σc,i(q, r) . (9.5)

These reduce to simpler inequalities when states p, q, r are not all distinct or coincide

with the gap state (which we do not enumerate here to save space).

163

The remaining constraints, for all classes c ∈ C, positions −w ≤ i ≤ w,

states p, q ∈ Q, and gap state ξ, are,

σc,i(p, q) = σc,i(q, p) , (9.6)

σc,i(p, p) ≤ σc,i(p, q) , (9.7)

σc,i(p, q) ≥ 0 , (9.8)

σc,i(ξ, ξ) = 0 , (9.9)

τc ≥ 0 , (9.10)

which ensure the distance functions are symmetric and non-negative. (We do not

enforce the other metric conditions dc(W,W) = 0 and dc(V,W) > 0 for V 6= W , as

these are not needed for our coreness estimation task, and we prefer having a less

constrained distance dc that might better minimize the following error objective.)

Finally, the objective function minimizes the average error over all training sam-

ple windows. Formally, we minimize,

α
1

|C|−1

∑
c∈C−{⊥}

1

|Sc|
∑
W ∈Sc

1

k

∑
V ∈Nc(W,k)

eVW +

(1−α)
1

|C|
∑
c∈C

1

|Sc|
∑
W ∈Sc

fW ,

where 0 ≤ α ≤ 1 is a blend parameter controlling the weight on target error versus

impostor error. We note that in an optimal solution to this linear program, vari-

ables eVW = max
{
dc(V,W)− τc, 0

}
and fW = maxV,b

{
τb − db(V,W) + 1, 0

}
, since

inequalities (9.1)–(9.4) ensure the error variables are at least these values, while min-

imizing the above objective function ensures they will not exceed them. Thus solving

the linear program finds distance functions dc, given by substitution scores σc,i(p, q),

that minimize the average over the training windows W ∈ Sc of the amount of vi-

olation of our ideal conditions dc(V,W) ≤ τc for targets V ∈ Tc and db(V,W) > τb

for impostors V ∈ Tb.
To summarize, the variables of the linear program are the substitution

scores σc,i(p, q), the error variables eVW and fW , and the threshold variables τc.

164

For n total training sample windows, k impostors per sample window, m window

classes of width w, and amino acid alphabet size s, this is Θ(kn + s2wm) total

variables. The main constraints are the target constraints, impostor constraints,

and triangle inequality constraints. For ` impostors per sample window, this is

Θ
(
(k+`m)n+ s3wm

)
total constraints. We ensure that solving the linear program

is tractable by controlling the number ` of impostors and the total size n of the

training sample.

After solving the linear program, we rescale the distance functions so their cor-

responding distance thresholds all match the common value τ := maxc∈C τc. Specifi-

cally, we scale up distance function dc by multiplying its substitution scores σc,i(p, q)

(and distance threshold) by factor τ/τc. (Scaling up maintains that each class has

a margin of at least 1.) This makes the distance functions dc commensurate across

classes. A conceptual 1-nearest-neighbor classifier for window W (which we do not

employ) could then just find the nearest neighbor of W across all structured classes

using their class-specific distance functions, say it is window V from class c, and

classify W as a member of structured class c if dc(V,W) ≤ τ , and as a member of the

unstructured non-core class ⊥ otherwise. In actuality, rather than classifying W ,

we map its 1-nearest-neighbor distance dc(V,W) to a coreness value, as described

in Section 9.2.3.

Ensuring the triangle inequality

We now show that the resulting distance functions satisfy the triangle inequality,

which allows us to use fast data structures for metric-space nearest-neighbor search

when evaluating the coreness estimator (as discussed in Section 9.2.3).

Theorem 8 (Triangle inequality on window distance) The class distance

functions dc obtained by solving the linear program satisfy the triangle inequality.

165

Proof For every class c, and all windows U , V , and W ,

dc(U,W) =
∑
i

∑
p,r

Ui(p) Wi(r) σc,i(p,r)

=
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) σc,i(p,r) (9.11)

≤
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) ·
(
σc,i(p,q) + σc,i(q,r)

)
(9.12)

=
∑
i

∑
p,q

Ui(p) Vi(q) σc,i(p,q) +∑
i

∑
q,r

Vi(q) Wi(r) σc,i(q,r) (9.13)

=
∑
i

dc,i(Ui, Vi) +
∑
i

dc,i(Vi,Wi)

= dc(U,V) + dc(V,W) ,

where equation (9.11) follows from
∑

q Vi(q) = 1; inequality (9.12) follows from

constraint (9.5) in the linear program; and equation (9.13) follows from
∑

rWi(r) =∑
p Ui(p) = 1. 2

9.3 Using coreness to improve accuracy estimation

The Facet estimator (see Chapter 3) of alignment accuracy is a linear combination of

efficiently-computable feature functions that are positively correlated with the true

accuracy of an alignment. In general, the true accuracy of a computed alignment

is evaluated just with respect to the columns of the reference alignment that are

labeled as core; non-core columns do not contribute to true accuracy. Consequently,

the ability to predict whether a column in a computed alignment corresponds to a

core column in the unknown reference, or even better, to predict the coreness value of

the column, should afford improved feature functions. We use the predicted coreness

of computed alignment columns to improve the Facet estimator by: (1) creating

a new feature function that attempts to directly estimate alignment accuracy by

essentially counting the number of columns in the computed alignment that are

predicted to be core and dividing by the estimated number of core columns in the

166

reference, and (2) modifying the original feature functions so their evaluation is

concentrated on columns with high predicted coreness. We first describe how we

construct this new feature, and then briefly review the original features used in

Facet and how we augment them with predicted coreness.

9.3.1 Creating a new coreness feature

The alignment accuracy measure known in the literature as “total column score”

(or TC-score) is defined as the number of core columns in the reference alignment

that are perfectly aligned in the computed alignment, divided by the number of

core columns in the reference. Our new feature function, which we call Predicted

Alignment Coreness, is designed to estimate the total column score of a computed

alignment (which cannot be exactly determined as the correct reference alignment

is unknown). Denote our coreness estimator from Section 9.2.3 for alignment col-

umn C by χ(C), which predicts coreness by evaluating our coreness regression func-

tion on a window centered on C. For a computed multiple sequence alignment A
of a set of sequences S, and a given coreness threshold κ, the Predicted Alignment

Coreness feature function is,

FAC(A) :=

∣∣∣{C ∈ A : χ(C) ≥ κ
}∣∣∣

L(S)
, (9.14)

where the numerator counts the number of columns of A whose predicted coreness

is above threshold κ (in which case the column is effectively predicted as being

core), and the normalization function L in the denominator is an estimate of the

number of core columns in the unknown reference alignment of the sequences S. The

estimator L is a polynomial in several easily-computed quantities of sequences S,

whose coefficients are found by fitting L on benchmark sets of sequences for which

a reference alignment (and the true number of core columns) is known.

We next describe how we determine estimator L.

167

Estimating the number of core columns

Function L(S) that estimates the number of core columns in the reference alignment

should tend to be increasing in the length of the sequences, and decreasing in their

dissimilarity. The form of the estimator that we consider is a polynomial whose

terms are generally the product of a measure of sequence length and a fractional

quantity related to the percent identity of the sequences. We consider a variety

of such measures, which gives a polynomial with many terms, and then solve a

linear programming problem to find their coefficients by minimizing the L1-norm

to true core column counts on example benchmarks, which effectively selects the

appropriate terms (since many coefficients turn out to be zero).

The length measures on sequence set S that we consider are the maximum, min-

imum, and average length of the sequences in set S. We call L the set of these three

length measures `max, `min, and `avg. The similarity measures on S that we consider

are forms of percent identity, evaluated by summing over all pairs of sequences in S
the maximum number of identities between each pair of sequences (computed by

dynamic programming using the identity substitution matrix with no gap penalties),

and normalizing by summing over all pairs of sequences the minimum, maximum,

or average lengths of the sequences, giving percent identity measures pmin, pmax,

and pavg. We call P the set of these three percent identity measures. As a gap

dissimilarity measure we also consider the difference in length between the longest

and shortest sequences in S normalized by any of the length measures, giving the

ratio measures rmax, rmin, and ravg, as well as the length ratios rmm :=`min/`max,

ram :=`avg/`max, rma :=`min/`avg. Call R the set of these ratio measures.

The general form of estimator L is then,

L(S) :=
∑

`∈L, p∈P

c`p `(S) p(S) +
∑

`∈L, r∈R

c`r `(S) r(S) +∑
`∈L, p∈P, r∈R

c`pr `(S) p(S) r(S) .

We fit coefficients c`p, c`r, c`pr by solving a linear program that minimizes the sum

of the absolute values of the differences between the true number of core columns

168

and the estimated number over all reference alignments in our suite of benchmarks.

The fitted function L that we use for evaluating the Predicted Alignment Core-

ness feature FAC is given in Section 9.4.1.

9.3.2 Augmenting former features by coreness

Since the true accuracy of a computed alignment is measured just with respect to

the core columns of a reference alignment, and non-core columns are ignored, con-

centrating an accuracy estimator on columns with higher coreness should improve

the estimator. Accordingly, we modify the alignment feature functions used by the

Facet estimator (see Chapter 3) to focus their evaluation on columns of higher pre-

dicted coreness. Below we discuss only those features that can incorporate coreness;

a full description of all feature functions in Facet is in Chapter 3.

Secondary Structure Blockiness takes secondary structure predictions from

PSIPRED (Jones, 1999) and finds a packing of secondary structure blocks of maximum

total score, where a block is an interval of columns and a subset of the sequences

such that all residues in the block have the same secondary structure prediction,

a packing is a set of blocks whose column intervals are disjoint, and the score of

a block is the total number of pairs of residues within the columns in the block.

We modify the score of a block by weighting the number of pairs per column by

the column’s predicted coreness. Secondary Structure Identity is the fraction of

substitutions in the computed alignment that share the same predicted secondary

structure, which we modify by weighting the count of substitutions with shared

structure by their column’s predicted coreness. Amino Acid Identity uses predicted

coreness to weight the fraction of substitutions in a column that are in the same

amino acid equivalence class. We modify Average Substitution Score by averaging

the BLOSUM62 score (Henikoff and Henikoff, 1992) of all substitutions, weighted by

their column’s predicted coreness.

169

9.4 Assessing the coreness prediction

We evaluate the performance of our new approach to core column prediction, and its

use in accuracy estimation for alignment parameter advising, through experiments

on a collection of protein multiple sequence alignment benchmarks. A full descrip-

tion of the benchmarks, and the universe U of parameter choices used for parameter

advising, can be found in Chapter 3, and is briefly described here.

The benchmarks used in our experiments consist of reference alignments of pro-

tein sequences that are largely induced by structurally aligning their known three-

dimensional structures. In particular, we use the BENCH suite of Edgar (2009),

supplemented by a selection from the PALI suite of Balaji et al. (2001). The full

benchmark collection we use consists of 861 reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-

represented in this collection. To correct for this bias towards easy benchmarks when

evaluating average advising accuracy, we binned the 861 benchmarks by hardness,

which we measured by the true accuracy of the alignment of the benchmark’s se-

quences computed using the multiple alignment tool Opal under its optimal default

parameter setting. We then divided the full range [0, 1] of accuracies into 10 bins,

where bin b for b = 1, . . . , 10 contains hardness interval
(
(b−1)/10, b/10

]
, and has

12, 12, 20, 34, 26, 50, 62, 74, 137, and 434 benchmarks, respectively.

We use 12-fold cross-validation to assess the improvement in advising perfor-

mance gained by learning the coreness estimator and our improved accuracy esti-

mator. We construct training and testing subsets of the alignment benchmarks by

evenly and randomly distributing benchmarks into 12 groups for each hardness bin;

forming 12 splits of the entire collection of benchmarks into a training class and a

testing class, where each split places one group in a bin into the training class and

the other 11 groups in the bin into the training class; and for each split, generating

a training set and testing set of example alignments by, for each benchmark B in a

training or testing class, generating |U | example alignments in the respective train-

ing or testing set by running Opal on B with each parameter choice in universe U .

170

An estimator learned on the examples from a training set was evaluated on examples

from the corresponding testing set. The results we report are averages over 12 folds,

where each fold is one of these pairs of associated training and testing sets. (Note

that across the 12 folds, every example is tested on exactly once.)

9.4.1 Constructing the coreness regressor

We next present results on constructing the coreness regressor, specifically, on learn-

ing its distance function, mapping distances to coreness, and estimating the number

of core columns.

Learning the distance function

The set of column windows for each class were constructed using the reference

alignments of the benchmarks in the training set for each cross-validation fold. A

subsampling of 4000 examples of each class was put into the set of training examples,

and 4000 examples (or the remaining examples of that class, whichever is smaller)

are put into the database for each class searched for nearest neighbors. We use

a subset of 2000 of the 24,000 collected training examples for learning distances,

to reduce the training time. A similar set of 2000 windows was collected from the

alignments of testing benchmarks, to test the generalization of the distance functions

when used for core column prediction.

We use a default distance between the training windows and each example win-

dow in the database for each class to get the initial sets of targets and impostors.

The default distance on a pair of states is a linear combination of the VTML200

amino acid substitution score (shifted and scaled to a dissimilarity value in the

range [0, 1]) and the identity of the secondary structure prediction. For each col-

umn i with −1 ≤ i ≤ 1 in a window of three columns, we set the column weight wi

to w0 = 1
2
, w{−1,+1} = 1

4
for all columns in a class c that are core, and wi = 0 for

non-core columns. The distance between states p = (a, s) and q = (b, t) in the ith

171

column of class c is,

σc,i(p, q) = wi

(
α VTML200(a, b) + (1−α) [s 6= t]

)
,

where α = 1
2
, and expression [s 6= t] evaluates to 1 if s 6= t and 0 otherwise.

We then learn a distance function using these initial sets of targets and impostors.

We use 2 targets and 150 impostors per training window per class. Once a distance

function is learned, we can use it to recompute the sets of targets and impostors

for learning a new distance function, and iterate this learning process. The table

below shows the area under the receiver operating characteristic curve (AUC) for

the first 10 iterations of distance learning, on both the training and testing examples.

There is a steady increase in AUC on training examples for the first four iterations,

with only a slight improvement in testing AUC; after the fifth iteration, no further

improvement is seen.

Iteration 1 2 3 4 5 6 7 8 9 10

training AUC 86.3 93.9 98.9 99.3 99.3 99.4 99.3 99.3 99.3 99.4

testing AUC 83.8 82.5 84.9 84.8 85 84.8 84.6 84.6 84.6 84.3

We also performed this same training procedure using random examples from the

correct and incorrect class databases for the targets and imposters. Using random

targets and impostors, the training and testing AUC values were respectively 85.8

and 88.7 after a single iteration. While distance learning is effective, it is overfitting

to the training data, most likely due to the small number of training examples used.

Increasing the set of training examples led to prohibitively long running times for

solving the linear program to find the optimal distance. Consequently, we use the

distance functions learned on random points in our experiments that apply predicted

coreness to improve the Facet estimator, as they generalize better.

Mapping distance to coreness

Figure 9.1 shows on its vertical axis the average true coreness of examples, superim-

posed with the fitted logistic transform function for predicted coreness, and on its

172

horizontal axis the corresponding 1-nearest-neighbor distance, for one training fold

of examples. The blue and red lines show the average coreness of the examples in

the training set for which the nearest neighbor is in a core class and a structured

non-core class, respectively. The top and bottom green curves show the two logistic

transform functions for the core and non-core classes, respectively, fitted to this

training data (which are used when predicting column coreness on testing data).

Clearly the green logistic curves fit the data quite well. Note the steep transition

from high to low coreness when the nearest neighbor is from a core class.

Estimating the number of core columns

For function L(S) that estimates the number of core columns in the unknown refer-

ence alignment, the linear programming approach described in Section 9.3.1 to find

optimal coefficients gave the fitted estimator,

(1.020) `min pmax rmm + (0.151) `min rmm +

(0.035) `avg pmax ram + (0.032) `avg pmin rmin +

(0.003) `max pavg ravg .

Figure 9.2 shows the correlation between the estimated number of core columns and

the true number of core columns for each benchmark. The fitted estimator correlates

well with the true number of core columns, but tends to overestimate, possibly due

to larger benchmarks having columns that are very close to being core.

9.4.2 Improving parameter advising

The task of parameter advising is to select a choice of values for the parameters

of the alignment scoring function for a multiple sequence alignment tool, based

on the set of input sequences to align. A parameter advisor has two ingredients:

(1) an accuracy estimator, which estimates the accuracy of a computed alignment

(for which the reference is unavailable); and (2) an advisor set, which is the set

of assignments of values to the aligner’s parameters that are considered by the

advisor. The advisor picks the choice of values from the advisor set for which the

173

1-Nearest Neighbor Distance x105
1 1.5 2 2.5 3

A
ve

ra
ge

 T
ru

e
C

or
en

es
s

0

0.2

0.4

0.6

0.8

1
 Core Examples
 Non-core Examples
 Fitted Transform

Figure 9.1: Fit of the logistic transform functions for the coreness regressor to the
average true coreness of training examples at each nearest neighbor distance.

True Number of Core Columns
0 100 200 300 400 500 600Es

tim
at

ed
 N

um
be

r o
f C

or
e

C
ol

um
ns

0

100

200

300

400

500

600

Figure 9.2: Correlation of the estimated number and true number of core columns.

174

aligner produces a computed alignment of the input sequences of highest estimated

accuracy. In our experiments, we assess the performance of parameter advising using

the Facet accuracy estimator modified by predicted coreness. For comparison, we

also assess the advising accuracy of the TCS estimator, an unmodified version of

Facet, and three versions of Facet modified using the column quality scores of TCS,

ZORRO, and true coreness. We modify using true coreness to show a theoretical upper

bound on the improvement possible if we could predict coreness perfectly.

We focus in this study on parameter advising for the multiple sequence alignment

tool Opal (Wheeler and Kececioglu, 2007, 2012). While parameter advising increases

the accuracy of many of the popular alignment tools (see Chapter 7), Opal is an

ideal test bed for parameter advising, as in contrast to other aligners, it computes

subalignments that are optimal with respect to the parameter choice for the sum-of-

pairs scoring function at each node of the guide tree during progressive alignment.

The choice of advisor set is crucial for parameter advising. Clearly the per-

formance of an advisor is limited by the quality of the parameter settings from

which the advisor can pick. We consider two kinds of advisor sets (see Chapter 5):

accuracy-estimator-independent oracle sets, which contain an optimal set of choices

that maximize the performance of a perfect advisor that uses true accuracy for its

accuracy estimator; and accuracy-estimator-dependent greedy sets, which tend to

yield better performance in practice than oracle sets, but are tuned for a specific

accuracy estimator. Finding such advisor sets requires specifying a finite universe of

parameter choices from which to draw the set. Starting from roughly 16,900 param-

eter choices for Opal, we form a reduced universe by selecting the 25 most accurate

parameter choices from each benchmark difficulty bin. This gave a universe of

243 parameter choices from which to construct oracle and greedy advisor sets.

When evaluating average advising accuracy on benchmarks, we correct for the

over-representation of easy-to-align benchmarks by weighting benchmarks according

to the same hardness bins described earlier. The weight of a benchmark falling in

bin b is (1/10)(1/nb), where nb is the number of benchmarks in bin b. These weights

are such that each hardness bin contributes equally to the advising accuracy, which

175

effectively uniformly averages advising accuracy across the full range of hardnesses.

Note that under this equal weighting of hardness bins, an advisor that uses only

the single optimal default parameter choice will have an average advising accuracy

of roughly 50% (illustrated later in Figure 9.3). This establishes as a point of

reference an average advising accuracy of 50% as the baseline against which to

compare advising performance.

Note that if we instead measured advising accuracy by uniformly averaging over

benchmarks, then the predominance of easy benchmarks (for which little improve-

ment is possible over the default parameter choice) makes both good and bad advi-

sors tend to an average accuracy of nearly 100%. By uniformly averaging over bins,

we can discriminate among advisors, though a typical value for average advising

accuracy is now pulled down from 100% toward 50%.

Modifying the Facet accuracy estimator

We explore using our new coreness estimator, as well as TCS and ZORRO, to modify

the existing features of Facet according to the procedure described in Section 9.3.2,

and we also include the new Predicted Alignment Coreness feature described in

Section 9.3.1. For the existing feature functions that can be modified by coreness,

we consider using both the original and modified feature. We also explore using true

coreness (as opposed to predicted coreness), which provides a theoretical limit on

what is possible with a perfect coreness estimator. We learned coefficients for the

feature functions of all these variants of Facet separately, using the difference-fitting

technique described in Chapter 2.

The new alignment accuracy estimator that uses our coreness estimator has

non-zero coefficients for seven features: our new feature, Predicted Alignment Core-

ness FAC; two features that have been modified with predicted coreness, namely,

Amino Acid Identity F ′AI and Secondary Structure Identity F ′SI; and the four orig-

inal features Gap Open Density FGO, Secondary Structure Agreement FSA, Amino

Acid Identity FAI, and Secondary Structure Blockiness FBL. The fitted accuracy

176

estimator that uses predicted coreness is,

(0.512)FGO + (0.304)F ′SI + (0.157)FSA + (0.109)FAI +

(0.096)FBL + (0.025)F ′AI + (0.013)FAC .

These feature functions have different ranges, so the magnitudes of the coefficients

do not necessarily correspond to the importance of the features.

Improvement on oracle advisor sets

Figure 9.3 compares these various accuracy estimators in the context of parameter

advising using estimator-independent oracle advisor sets (see Chapter 5). The hori-

zontal axis is the cardinality of the advisor set, i.e. the number of parameter choices

available to the advisor, while the vertical axis is average advising accuracy using

various accuracy estimators. We compare the advising accuracy using different ver-

sions of Facet, as well as using the TCS accuracy estimator, on the same oracle sets,

to isolate the effect each modification to the accuracy estimator has on advising

performance. Using our new coreness predictor to modify the features of Facet

increases the accuracy of parameter advising by as much as much as 3%, compared

to the original unmodified version. This increase is in addition to the improvement

of unmodified Facet over TCS, the next-best accuracy estimator in the literature.

Improvement on greedy advisor sets

The results from the preceding section show the effect of using different accuracy

estimators on the same advisor sets of parameter choices. Here we show the effect of

using different accuracy estimators on greedy advisor sets (see Chapter 5), which are

near-optimal accuracy-estimator-dependent advisor sets that are designed to boost

the advising accuracy when using a given accuracy estimator.

Figure 9.4 shows the advising accuracy using the Facet estimator modified by

true coreness, predicted coreness, TCS, and ZORRO, using greedy advisor sets found

specifically for each of these accuracy estimators. (Here each accuracy estimator is

used with a different advisor set learned specifically for it by a greedy algorithm.)

177

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Parameter Set Cardinality

Facet/true Facet/TCS
Facet/predicted Facet/Zorro
Facet/none TCS

Oracle	Sets	

Figure 9.3: Advising accuracy using oracle sets with the modified Facet or TCS

estimators.

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
is

ng
 A

cc
ur

ac
y

Parameter Set Cardinality

Facet/true Facet/Zorro
Facet/predicted Facet/TCS
Facet/none TCS

Greedy	Sets	

Figure 9.4: Advising accuracy using greedy sets with the modified Facet or TCS

estimators.

178

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Parameter Set Cardinality

Training
Testing

Figure 9.5: Training and testing advising accuracy using Facet with predicted
coreness.

Once again the horizontal axis is the advisor set cardinality, and the vertical axis is

advising accuracy averaged over the testing benchmarks in all folds. Using the new

coreness predictor boosts the advising accuracy over using the original estimator by

almost 2% when using a greedy advisor set of cardinality 7. In contrast, using TCS

and ZORRO to modify features actually reduces the advising accuracy of greedy sets.

Figure 9.5 shows the advising accuracy on both training and testing benchmarks

for the Facet estimator modified by predicted coreness using greedy advisor sets.

The drop between training and testing accuracy suggests that by improving the

generalization of greedy sets, further improvement in advising accuracy should be

possible.

Summary

We have developed a column coreness estimator for protein multiple sequence align-

ments that uses a regression function on nearest neighbor distances for class distance

functions learned by solving a new linear programming formulation. When applied

to alignment accuracy estimation and parameter advising, the coreness estimator

strongly outperforms others from the literature, and gives a significant boost in

accuracy for advising.

179

CHAPTER 10

Conclusions

In this dissertation, we have addressed one of the major problems in protein multi-

ple sequence alignment: how to choose a setting for the multitude of parameters in

aligners. Multiple sequence alignment is an essential step in many biological anal-

yses, and changing a parameter setting even slightly, can greatly affect the quality

of the resulting alignment. Researchers typically use the default parameter settings

that come with an aligner, which may be goof on average, but can nevertheless

produce low quality alignments for particular inputs.

In Chapter 1, we introduced our approach called parameter advising, which

will find a parameter setting that yields a high quality alignment for a given input.

A parameter advisor aligns the input sequences for each of a set of several parameter

choices (where a parameter choice assigns a value to each of the aligner’s tunable

parameters), then selects the alignment of highest estimated accuracy from the

resulting collection of alignments. A parameter advisor has two major components:

(i) an advisor set of parameter choices considered by the advisor, and (ii) the advisor

estimator that is used to rank the alignments produced by the aligner for these

parameter choices.

In Chapters 2 and 3, we presented a new accuracy estimator called Facet

(short for “feature-based accuracy estimator”), that computes an accuracy estimate

as a linear combination of efficiently-computable feature functions. Multiple se-

quence alignment accuracy is measured as the fraction of aligned residue pairs in a

known reference alignment that are recovered in the computed alignment. Without

such a reference, alignment we are left to estimate accuracy. Chapter 2 described

out framework for accuracy estimation and several techniques for finding coefficients

that work well for parameter advising. Chapter 3 gave details on the feature func-

tions used in Facet, which include novel features of an alignment that measure

180

non-local properties.

Chapter 4 formally defined three problems: (1) Optimal Advisor, the problem

of finding both the optimal coefficients for an estimator, and the optimal set of

parameters choices for an advisor; (2) Advisor Set, a restriction of the Optimal

Advisor problem where the objective is to find the set of parameter choices for a

fixed estimator that has the highest average advising accuracy; and (3) Advisor

Estimator, a restriction of the Optimal Advisor problem where the objective is to

find the best estimator for a fixed advisor set. We show that all three problems are

NP-complete.

Chapter 5 presented two approaches to the Advisor Set problem, in light of the

fact that it is NP-complete. The first formulates the problem as an integer linear

program. Unfortunately, finding its optimal solution is not practical even for small

input sizes. The second is a greedy `
k
-approximation algorithm, for any constant

` < k. This greedy algorithm finds a near-optimal solution of cardinality k, given

an optimal solution of size ` (which can be found in polynomial-time for constant

`).

We used the Facet accuracy estimator to perform parameter advising for the

Opal (Wheeler and Kececioglu, 2007, 2012) multiple sequence aligner. Chapter 6

demonstrated parameter advising can greatly increases the accuracy of multiple

sequence alignment for almost all inputs. This increase is most pronounced on the

hardest benchmarks, where using an advising set of cardinality k = 10 boosts the

accuracy by about 15%.

Chapter 7 presented the first true ensemble aligner. Just as different param-

eter settings for a given input can produce very different alignments of the same

sequences, the same is true for different aligners. These differences were exploited

by extending parameter advising to aligner advising.

Since protein sequences do not necessarily have a homogeneous mutation rate

across their length, the most accurate alignment for a set of input sequences may

use different parameter settings in different regions of the alignment. Chapter 8

developed adaptive local realignment, which identifies regions that may be mis-

181

aligned under a single parameter choice and attempts to replace these regions with

a more accurate alignment via parameter advising.

Chapter 9 presented a new approach to to predicting so-called core columns

of a tertiary structure based benchmark within a computed alignment. Since core

columns are the only locations where alignment accuracy is measured, ideally we

would like to identify these locations when estimating accuracy so we can concen-

trate our estimator just on these positions. We use an approach similar to nearest-

neighbor classification to construct a regression function that maps the amino-acid

and predicted secondary-structure information in a window of columns into an es-

timate of how much of those windows come from core columns of the unknown

reference alignment.

In addition to the developing the theory behind parameter advising, we have

also produced software implementing of our Facet estimator for use by researchers.

Facet is released as a stand-alone tool for parameter advising, as well as the neces-

sary software to use a system for ensemble alignment. We have also released a new

version of the Opal aligner that incorporates both parameter advising and adap-

tive local realignment. This enables any researcher who utilizes protein multiple

sequence alignment to automatically increase the accuracy of their computed align-

ments without having to manually search for parameters that work well on their

datasets.

10.1 Further research

This dissertation has developed a new methodology for parameter advising that can

be applied outside multiple sequence alignment to any problem domain that has:

(i) a tool, or set of tools, with multiple parameters whose values affect the accuracy

of their resulting output, (ii) a collection of known ground truth results against

which to measure the accuracy of the output of these tools, and (iii) some domain

knowledge to discover feature functions that can be combined into an accuracy

estimator.

182

One way to expand this work to new applications is to extend Facet to use on

biological data beyond proteins. Extending the estimator to handle DNA and RNA

sequences would allow advising to be used by a broader audience of researchers

who employ multiple sequence alignment. Additionally this would allow parameter

advising to be applied to new domains within bioinformatics such as sequence assem-

bly and whole-genome alignment. Extending Facet to DNA and RNA alignments

requires the creation of several feature functions that go beyond capturing only ba-

sic sequence information. As we have shown for proteins, the features that have

the strongest correlation with true alignment accuracy are those that exploit the

additional information gained from examining the predicted secondary-structure.

To create RNA feature functions we could also use predicted secondary struc-

ture, but this would only apply to the class of non-coding RNAs (ncRNA, those that

form tertiary structure without coding for proteins). Just as with proteins, RNA

secondary-structure can be predicted for a new input sequence. While this has

been used to modify alignment objective functions (see DeBlasio et al., 2009, 2012a;

DeBlasio, 2009), such approaches typically cannot handle pseudoknots (crossing

secondary-structure pairings) when constructing alignments by dynamic program-

ming. Since the features in Facet can take a global view of an RNA alignment, we

could create feature functions that can account for pseudoknots.

To create DNA feature functions for Facet, there is no longer secondary-

structure to exploit, but we might use some correlates that could guide us in pre-

dicting high accuracy alignments. One such additinal labeling (which is essentially

what structure predictions provide) is to predict the categories of sequence regions.

Such labels might include identifying protein-coding regions, translation start sites,

potential ncRNAs, and so on. Another labeling that might help in estimating align-

ment accuracy could be predicting chromatin placement predictions. (When DNA

is stored in chromosomes, it is wrapped around large proteins called chromatin, and

only small regions between chromatin are accessible.) Recent work has shown that

chromatin placement of these chromatin is used at certain times for translational

regulation, so such locations might be conserved in high accuracy alignments. Be-

183

yond creating new feature functions for DNA, a major challenge is the lack of DNA

multiple sequence alignment benchmarks. Without known ground-truth alignments,

we cannot learn advisor sets and estimator coefficients. One recourse would be to

generate simulated multiple sequence alignment benchmarks. With simulation, we

know the true evolutionary history of a sequence, so we can recover the ground-truth

alignment. Simulation, however, limits us to only learning simulated evolutionary

parameter values and we may not learn the true biological parameter values that

would yield the most biologically realistic alignments.

Once we have the Facet estimator for DNA, we can use it not only for global

advising of DNA multiple sequence alignments, but also for local advising of whole-

genome alignments through adaptive local realignment. Each section of a genome

can evolve differently, and may even be rearranged or transposed from another

sequence. Applying adaptive local realignment to whole-genome alignments could

overcome the challenge posed by heterogeneity in genomic sequences.

De novo sequence assembly suffers from many of the same complications as mul-

tiple sequence alignment: a multitude of tools that can be used to align sequences,

with each tool having many parameters that can affect the output of the assembler,

and no good way to rank assemblies obtained by different methods. For sequence

assembly, we again have to answer two questions: (1) What features can we create to

measure the accuracy of an assembly? And (2) what is the ground-truth assembly?

Standard measures of assembly quality are the N50 score, which measures the length

of the smallest contig (a contiguous layout of sequence reads) that when placed in

a sorted list of contigs covers half the expected length of the genome; and the L50

measure, which is the minimum number of contigs that cover half the genome. We

could again devise new feature functions that measure the consistency of sequence

labels (like those described earlier for DNA alignments). For the ground-truth as-

sembly one possibility would be to employ read mapping against a known reference

genome, and then remove the reference to leave a result resembling de novo assembly

Alternatively, one could simulate a set of reads and take their known relation to the

original underlying sequence as the ground-truth.

184

Another application of parameter advising within bioinformatics could be to

read mapping: that is, mapping fragments to a known reference genome. The

feature functions needed for read mapping might be different from those for de novo

assembly, since we know the reference genome. A common quality measure is the

fraction of reads successfully mapped, where reads can fail to be mapped due to

sequencing error or a poor choice of the mapping parameters. Just as with DNA

alignment and de novo assembly, there may be a problem with lack of benchmarks,

but simulation might provide a ground-truth benchmarks.

In extending parameter advising to new applications, there are a few issues that

still need to be be addressed. One is the generalization of our greedy estimator-

aware advisor sets. Chapter 6 showed that greedy sets tend to not generalize well,

and furthermore, exact sets generalize even worse. This behavior is exacerbated in

the context of ensemble alignment in Chapter 7, where we compared default aligner

advising to general aligner advising. Since the general advising universe is a superset

of the default advising universe, as we increase the size of the universe, the advisor

accuracy should increase (assuming we have a good estimator). In our experiments

this is true for training data (see Figure 7.8), but it is not true when applied to

testing data (see Figure 7.9).

One possible method to overcome the generalization issue for learning advi-

sor sets could be to utilize inverse parametric alignment from Kim and Kececioglu

(2008). Inverse parametric alignment find the optimal single choice of aligner pa-

rameters that give the highest average alignment accuracy for a set of examples.

In the methods presented in this dissertation advisor set finding relies on a fixed

universe of advisor parameter choices. This universe is intended to cover the entire

range of possible values for all of the tunable parameters for an aligner. Many of

the tunable parameters are continuous so we are forced to discretize the range of

possible settings to generate a finite universe. As the granularity of this discretiza-

tion is increased so too are the changes for overfitting assuming we keep the same

set of benchmark alignments. Rather than relying on a fixed universe we can use

inverse parametric alignment in a greedy manner to develop an advisor set. Start

185

by using inverse parametric alignment to generate single parameter choice, P1, that

is optimal on average for all of the available examples. Then remove any example

that when aligned using P1 already have high accuracy, essentially removing the

high accuracy bin’s examples in earlier chapters. With the remaining examples,

which we know have low accuracy when aligned using P1, we use inverse parametric

alignment again to find the optimal parameters, P2. We continue this procedure

until either we have a certain number of parameters or there are no longer any low

accuracy examples. We then construct an advisor set as the union of the parameter

choices we encountered

P = P1 ∪ P2 ∪ · · · ∪ Pk.

Using this method the learned advisor’s accuracy is no longer limited by the prede-

fined parameter universe.

We also have a similar issue with generalization in core-column prediction. While

considerable work was done in Chapter 9 to lean good distance functions on training

data for the nearest-neighbor search in out approach to coreness prediction, the

distance function learned in that chapter were limited by the available computational

resources for project. With more computing time, we may be able to learn better

distance functions that yield a more accurate coreness predictor with the methods

already developed. Additionally, we might also apply other distance metric learning

techniques from machine learning, including kernel transformations on the input

data to reduce its dimensionality.

Clearly there are many prosing directions in which to take this new methodology

of parameter advising.

186

REFERENCES

Ahola, V., T. Aittokallio, M. Vihinen, and E. Uusipaikka (2006). A statistical score
for assessing the quality of multiple sequence alignments. BMC Bioinformat-
ics, 7(484), pp. 1–19.

Ahola, V., T. Aittokallio, M. Vihinen, and E. Uusipaikka (2008). Model-based
prediction of sequence alignment quality. Bioinformatics, 24(19), pp. 2165–
2171.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215(3), pp. 403–
410.

Aniba, M. R., O. Poch, A. Marchler-Bauer, and J. D. Thompson (2010). AlexSys:
a knowledge-based expert system for multiple sequence alignment construction
and analysis. Nucleic Acids Research, 38(19), pp. 6338–6349.

Anson, E. L. and E. W. Myers (1997). ReAligner: a program for refining DNA
sequence multi-alignments. Journal of Computational Biology, 4(3), pp.
369–83.

Apweiler, R., A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,
C. O’Donovan, N. Redaschi, and L. S. L. Yeh (2004). UniProt: the Universal
Protein knowledgebase. Nucleic Acids Research, 32(Database), pp. D115–
D119.

Armougom, F., S. Moretti, V. Keduas, and C. Notredame (2006). The iRMSD: a
local measure of sequence alignment accuracy using structural information. In
Bioinformatics, pp. E35–E39.

Bahr, A., J. D. Thompson, J. C. Thierry, and O. Poch (2001). BAliBASE (Benchmark
Alignment dataBASE): enhancements for repeats, transmembrane sequences and
circular permutations. Nucleic Acids Research, 29(1), pp. 323–326.

Balaji, S., S. Sujatha, S. S. C. Kumar, and N. Srinivasan (2001). PALI: a database
of Phylogeny and ALIgnment of homologous protein structures. Nucleic Acids
Research, 29(1), pp. 61–65.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne (2000). The Protein Data Bank. Nucleic Acids
Research, 28(1), pp. 35–242.

187

Beygelzimer, A., S. Kakade, and J. Langford (2006). Cover trees for nearest neigh-
bor. Proceedings of the 23rd International Conference on Machine
Learning (ICML), pp. 97–104.

Bradley, R. K., A. Roberts, M. Smoot, S. Juvekar, J. Do, C. Dewey, I. Holmes, and
L. Pachter (2009). Fast Statistical Alignment. PLoS Computational Biology,
5(5), pp. 1–15.

Bucka-Lassen, K., O. Caprani, and J. Hein (1999). Combining many multiple align-
ments in one improved alignment. Bioinformatics, 15(2), pp. 122–130.

Camon, E., M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns,
N. Harte, R. Lopez, and R. Apweiler (2004). The Gene Ontology Annotation
(GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic
Acids Research, 32(90001), pp. 262D–266.

Capella-Gutierrez, S., J. M. Silla-Martinez, and T. Gabaldón (2009). trimAl: a tool
for automated alignment trimming in large-scale phylogenetic analyses. Bioin-
formatics, 25(15), pp. 1972–1973.

Carrillo, H. and D. Lipman (1988). The Multiple Sequence Alignment Problem in
Biology. SIAM Journal on Applied Mathematics, 48(5), pp. 1073–1082.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for
their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4),
pp. 540–552.

Chang, J. M., P. D. Tommaso, and C. Notredame (2014). TCS: a new multiple se-
quence alignment reliability measure to estimate alignment accuracy and improve
phylogenetic tree reconstruction. Molecular Biology and Evolution, 31(6),
pp. 1625–1637.

Collingridge, P. W. and S. Kelly (2012). MergeAlign: improving multiple sequence
alignment performance by dynamic reconstruction of consensus multiple sequence
alignments. BMC Bioinformatics, 13(117), pp. 1—10.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition. ISBN 0262033844,
9780262033848.

Darling, A. C., B. Mau, F. R. Blattner, and N. T. Perna (2004). Mauve: Multiple
Alignment of Conserved Genomic Sequence With Rearrangements. Genome
Research, 14(7), pp. 1394–1403.

188

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt (1978). A model of evolutionary
change in proteins. In Atlas of Protein Sequences and Structure, 5, pp.
345–352.

DeBlasio, D., J. Bruand, and S. Zhang (2009). PMFastR: A New Approach to
Multiple RNA Structure Alignment. Proceedings of the 9th International
Conference on Algorithms in Bioinformatics (WABI’09), pp. 49–61.

DeBlasio, D., J. Bruand, and S. Zhang (2012a). A Memory Efficient Method for
Structure-Based RNA Multiple Alignment. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 9(1), pp. 1–11.

DeBlasio, D. and J. Kececioglu (2014a). Learning Parameter Sets for Alignment
Advising. Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB), pp. 230–
239.

DeBlasio, D. and J. Kececioglu (2015). Ensemble Multiple Sequence Alignment via
Advising. Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB), pp. 452–
461.

DeBlasio, D. F. (2009). New Computational Approaches For Multiple RNA
Alignment And RNA Search. Masters Thesis. University of Central Florida,
Orlando, Florida.

DeBlasio, D. F. and J. D. Kececioglu (2014b). Facet: software for ac-
curacy estimation of protein multiple sequence alignments (version 1.1).
http://facet.cs.arizona.edu.

DeBlasio, D. F. and J. D. Kececioglu (2016). Learning Parameter-Advising Sets
for Multiple Sequence Alignment. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics. To appear.

DeBlasio, D. F., T. J. Wheeler, and J. D. Kececioglu (2012b). Estimating the accu-
racy of multiple alignments and its use in parameter advising. Proceedings of
the 16th Conference on Research in Computational Molecular Biol-
ogy (RECOMB), pp. 45–59.

Do, C. B., M. S. P. Mahabhashyam, M. Brudno, and S. Batzoglou (2005). ProbCons:
probabilistic consistency-based multiple sequence alignment. Genome Re-
search, 15(2), pp. 330–340.

Dress, A. W., C. Flamm, G. Fritzsch, S. Grünewald, M. Kruspe, S. J. Prohaska,
and P. F. Stadler (2008). Noisy: Identification of problematic columns in multiple
sequence alignments. Algorithms for Molecular Biology, 3(7), pp. 1–10.

189

Durbin, R., S. R. Eddy, A. Krogh, and G. Mitchison (1998). Biological Sequence
Analysis: Probablistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press.

Edgar, R. C. (2004a). MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research, 32(5), pp. 1792–1797.

Edgar, R. C. (2004b). MUSCLE: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinformatics, 5(113), pp. 1—19.

Edgar, R. C. (2009). BENCH. http://www.drive5.com/bench.

Estabrook, G., C. Johnson, and F. M. Morris (1975). An idealized concept of the
true cladistic character. Mathematical Biosciences, 23(3), pp. 263 – 272.

Feng, D.-F. and R. F. Doolittle (1987). Progressive sequence alignment as a prereq-
uisitetto correct phylogenetic trees. Journal of Molecular Evolution, 25(4),
pp. 351–360.

Finn, R. D., J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin,
P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. L. Sonnhammer, S. R.
Eddy, and A. Bateman (2009). The Pfam protein families database. Nucleic
Acids Research, 38(Database), pp. D211–D222.

Fitch, W. M. and E. Margoliash (1967). A method for estimating the number of
invariant amino acid coding positions in a gene using cytochrome c as a model
case. Biochemical Genetics, 1(1), pp. 65–71.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-completeness. W.H. Freeman and Company,
New York.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology, 162(3), pp. 705–508.

Gotoh, O. (1993). Optimal alignment between groups of sequences and its ap-
plication to multiple sequence alignment. Computer Applications in the
Biosciences, 9(3), pp. 361–370.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge University Press,
New York, NY, USA.

Henikoff, S. and J. G. Henikoff (1992). Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences USA,
89(22), pp. 10915–10919.

190

Hertz, G. Z. and G. D. Stormo (1999). Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformatics, 15(7-
8), pp. 563–577.

Jones, D. T. (1999). Protein secondary structure prediction based on position-
specific scoring matrices. Journal of Molecular Biology, 292(2), pp. 195–202.

Jones, E., T. Oliphant, P. Peterson, et al. (2001). SciPy: Open source scientific
tools for Python. http://www.scipy.org.

Karlin, S. and S. F. Altschul (1990). Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proceedings of
the National Academy of Sciences of the United States of America,
87(6), pp. 2264–2268.

Katoh, K., K.-i. Kuma, H. Toh, and T. Miyata (2005). MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2),
pp. 511–518.

Katoh, K., K. Misawa, K.-i. Kuma, and T. Miyata (2002). MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Research, 30(14), pp. 3059–3066.

Kececioglu, J. and D. DeBlasio (2013). Accuracy estimation and parameter advising
for protein multiple sequence alignment. Journal of Computational Biology,
20(4), pp. 259–279.

Kececioglu, J. and E. Kim (2006). Simple and Fast Inverse Alignment. Proceed-
ings of the 10th Conference on Research in Computational Molecular
Biology (RECOMB), pp. 441–455.

Kececioglu, J. and D. Starrett (2004). Aligning alignments exactly. In Proceed-
ings of the 8th Conference on Research in Computational Molecular
Biology (RECOMB), pp. 85–96. ACM.

Kemena, C., J.-F. Taly, J. Kleinjung, and C. Notredame (2011). STRIKE: evaluation
of protein MSAs using a single 3D structure. Bioinformatics, 27(24), pp. 3385–
3391.

Kim, E. and J. Kececioglu (2008). Learning Scoring Schemes for Sequence Align-
ment from Partial Examples. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 5(4), pp. 546–556.

Kim, J. and J. Ma (2011). PSAR: measuring multiple sequence alignment reliability
by probabilistic sampling. Nucleic Acids Research, 39(15), pp. 6359–6368.

191

Kück, P., K. Meusemann, J. Dambach, B. Thormann, B. M. von Reumont, J. W.
Wägele, and B. Misof (2010). Parametric and non-parametric masking of ran-
domness in sequence alignments can be improved and leads to better resolved
trees. Frontiers in Zoology, 7(10), pp. 1–12.

Kuznetsov, I. B. (2011). Protein sequence alignment with family-specific amino acid
similarity matrices. BMC Research Notes, 4(296), pp. 1–10.

Landan, G. and D. Graur (2007). Heads or tails: a simple reliability check for
multiple sequence alignments. Molecular Biology and Evolution, 24(6), pp.
1380–1383.

Larkin, M. A. et al. (2007). ClustalW and ClustalX version 2.0. Bioinformatics,
23(21), pp. 2947–2948.

Lassmann, T. and E. Sonnhammer (2005a). Kalign: an accurate and fast multiple
sequence alignment algorithm. BMC Bioinformatics, 6(298), pp. 1–9.

Lassmann, T. and E. L. L. Sonnhammer (2005b). Automatic assessment of align-
ment quality. Nucleic Acids Research, 33(22), pp. 7120–7128.

Lee, C., C. Grasso, and M. F. Sharlow (2002). Multiple sequence alignment using
partial order graphs. Bioinformatics, 18(3), pp. 452–464.

Liu, K., T. J. Warnow, M. T. Holder, S. M. Nelesen, J. Yu, A. P. Stamatakis, and
C. R. Linder (2011). SATé-II: Very Fast and Accurate Simultaneous Estimation
of Multiple Sequence Alignments and Phylogenetic Trees. Systematic Biology,
61(1), pp. 90–106.

Liu, Y., B. Schmidt, and D. L. Maskell (2010). MSAProbs: multiple sequence align-
ment based on pair hidden Markov models and partition function posterior prob-
abilities. Bioinformatics, 26(16), pp. 1958–1964.

Loytynoja, A. and N. Goldman (2005). An algorithm for progressive multiple align-
ment of sequences with insertions. Proceedings of the National Academy
of Sciences, 102(30), pp. 10557–10562.

Misof, B. and K. Misof (2009). A Monte Carlo approach successfully identifies
randomness in multiple sequence alignments: a more objective means of data
exclusion. Systematic biology, 58(1), pp. 21–34.

Moré, J. J., D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow (1984). The MINPACK
Project. Sources and Development of Mathematical Software, pp. 88–
111.

192

Muller, J., C. J. Creevey, J. D. Thompson, D. Arendt, and P. Bork (2010). AQUA:
automated quality improvement for multiple sequence alignments. Bioinfor-
matics, 26(2), pp. 263–265.

Müller, T., R. Spang, and M. Vingron (2002). Estimating amino acid substitu-
tion models: a comparison of Dayhoff’s estimator, the resolvent approach and a
maximum likelihood method. Molecular Biology and Evolution, 19(1), pp.
8–13.

Needleman, S. B. and C. D. Wunsch (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3), pp. 443–453.

Notredame, C., D. G. Higgins, and J. Heringa (2000). T-Coffee: A novel method for
fast and accurate multiple sequence alignment. Journal of Molecular Biology,
302(1), pp. 205–217.

Notredame, C., L. Holm, and D. G. Higgins (1998). COFFEE: an objective function
for multiple sequence alignments. Bioinformatics, 14(5), pp. 407–422.

Ortuño, F., O. Valenzuela, H. e. Pomares, and I. Rojas (2013). Evaluating Multiple
Sequence Alignments Using a LS-SVM Approach with a Heterogeneous Set of Bio-
logical Features. Proceedings of the 12th International Work-Conference
on Artificial Neural Networks (IWANN 2013), pp. 150–158.

Ortuno, F. M., O. Valenzuela, H. Pomares, F. Rojas, J. P. Florido, J. M. Urquiza,
and I. Rojas (2012). Predicting the accuracy of multiple sequence alignment algo-
rithms by using computational intelligent techniques. Nucleic Acids Research,
41(1), pp. e26–e26.

Pei, J. and N. V. Grishin (2001). AL2CO: calculation of positional conservation in a
protein sequence alignment. Bioinformatics, 17(8), pp. 700–712.

Pei, J. and N. V. Grishin (2006). MUMMALS: multiple sequence alignment improved by
using hidden Markov models with local structural information. Nucleic Acids
Research, 34(16), pp. 4364–4374.

Pei, J. and N. V. Grishin (2007). PROMALS: towards accurate multiple sequence
alignments of distantly related proteins. Bioinformatics, 23(7), pp. 802–808.

Pei, J., R. Sadreyev, and N. V. Grishin (2003). PCMA: fast and accurate multiple
sequence alignment based on profile consistency. Bioinformatics, 19(3), pp.
427–428.

193

Penn, O., E. Privman, G. Landan, D. Graur, and T. Pupko (2010). An alignment
confidence score capturing robustness to guide tree uncertainty. Molecular Bi-
ology and Evolution, 27(8), pp. 1759–1767.

Prakash, A. and M. Tompa (2009). Assessing the Discordance of Multiple Sequence
Alignments. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 6(4), pp. 542–551.

Raghava, G., S. M. Searle, P. C. Audley, J. D. Barber, and G. J. Barton (2003).
OXBench: A benchmark for evaluation of protein multiple sequence alignment
accuracy. BMC Bioinformatics, 4(1), pp. 1–23.

Ren, J. (2014). SVM-based Automatic Annotation of Multiple Sequence Alignments.
Journal of Computers, 9(5), pp. 1109–1116.

Roshan, U. and D. R. Livesay (2006). PROBALIGN: multiple sequence alignment
using partition function posterior probabilities. Bioinformatics, 22(22), pp.
2715–2721.

Roskin, K. M., B. Paten, and D. Haussler (2011). Meta-Alignment with Crumble

and Prune: Partitioning very large alignment problems for performance and par-
allelization. BMC Bioinformatics, 12(1), pp. 1–12.

S. Schwartz, A. and L. Pachter (2007). Multiple alignment by sequence annealing.
Bioinformatics, 23(2), pp. e24–e29.

Sela, I., H. Ashkenazy, K. Katoh, and T. Pupko (2015). GUIDANCE2: accurate de-
tection of unreliable alignment regions accounting for the uncertainty of multiple
parameters. Nucleic Acids Research, 43(W1), pp. W7–W14.

Sievers, F. et al. (2011). Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1),
pp. 539–539.

Subramanian, A. R., M. Kaufmann, and B. Morgenstern (2008). DIALIGN-TX: greedy
and progressive approaches for segment-based multiple sequence alignment. Al-
gorithms for Mol. Biology, 3(6), pp. 1–11.

Subramanian, A. R., J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern (2005).
DIALIGN-T: An improved algorithm for segment-based multiple sequence align-
ment. BMC Bioinformatics, 6(66), pp. 1–13.

Suzek, B. E., H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu (2007). UniRef:
comprehensive and non-redundant UniProt reference clusters. Bioinformatics,
23(10), pp. 1282–1288.

194

IBM Corporation (2015). CPLEX: High-performance mathematical programming
solver for linear programming, mixed integer programming, and quadratic pro-
gramming (version 12.6.2.0). http://www.ilog.com/products/cplex.

The UniProt Consortium (2007). The Universal Protein Resource (UniProt). Nu-
cleic Acids Research, 35(suppl 1), pp. D193–D197.

Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994). ClustalW: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids
Research, 22(22), pp. 4673–4680.

Thompson, J. D., F. Plewniak, R. Ripp, J.-C. Thierry, and O. Poch (2001). To-
wards a reliable objective function for multiple sequence alignments. Journal of
Molecular Biology, 314(4), pp. 937–951.

Thompson, J. D., V. Prigent, and O. Poch (2004). LEON: multiple aLignment Eval-
uation Of Neighbours. Nucleic Acids Research, 32(4), pp. 1298–1307.

Thompson, J. D., J.-C. Thierry, and O. Poch (2003). RASCAL: rapid scanning and
correction of multiple sequence alignments. Bioinformatics, 19(9), pp. 1155–
1161.

Van Walle, I., I. Lasters, and L. Wyns (2005). SABmark: a benchmark for sequence
alignment that covers the entire known fold space. Bioinformatics, 21(7), pp.
1267–1268.

Wallace, I. M., O. O’Sullivan, D. G. Higgins, and C. Notredame (2006). M-Coffee:
combining multiple sequence alignment methods with T-Coffee. Nucleic Acids
Research, 34(6), pp. 1692–1699.

Wang, L. and T. Jiang (1994). On the complexity of multiple sequence alignment.
Journal of computational biology : a journal of computational molec-
ular cell biology, 1(4), pp. 337–348.

Weinberger, K. Q. and L. K. Saul (2009). Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research, 10,
pp. 207–244.

Wheeler, T. J. and J. D. Kececioglu (2007). Multiple alignment by aligning align-
ments. Proceedings of the 15th ISCB Conference on Intelligent Sys-
tems for Molecular Biology (ISMB), Bioinformatics, 23(13), pp. i559–
i568.

Wheeler, T. J. and J. D. Kececioglu (2012). Opal: software for aligning multiple
biological sequences (version 2.1.0). http://opal.cs.arizona.edu.

195

Wilbur, W. J. and D. J. Lipman (1983). Rapid similarity searches of nucleic acid and
protein data banks. Proceedings of the National Academy of Sciences of
the United States of America, 80, pp. 726–730.

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1(6), pp. 80–83.

Will, S., K. Reiche, I. L. Hofacker, P. F. Stadler, and R. Backofen (2007). Inferring
Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based
Clustering. PLoS Computational Biology, 3(4), pp. 680–691.

Woerner, A. and J. Kececioglu (2016). Faster metric-space nearest-neighbor search
using dispersion trees. In preparation.

Wu, M., S. Chatterji, and J. A. Eisen (2012). Accounting for alignment uncertainty
in phylogenomics. PLoS ONE, 7(1), pp. 1–10.

Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences
when substitution rates differ over sites. Molecular Biology and Evolution,
10(6), pp. 1396–1401.

Ye, Y., D. W.-l. Cheung, Y. Wang, S.-M. Yiu, Q. Zhang, T.-W. Lam, and H.-
F. Ting (2015). GLProbs: Aligning multiple sequences adaptively. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB),
12(1), pp. 67–78.

Zhihua, Z. (2012). Ensemble Methods: Foundations and Algorithms. Chap-
man and Hall.

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER Introduction and Background
	Introduction
	Parameter advising
	Survey of related work
	Accuracy estimation
	A priori advising
	Meta-alignment
	Column confidence scoring

	Review of protein secondary structure
	Plan of the dissertation

	CHAPTER Accuracy Estimation
	Introduction
	The estimator
	Learning the estimator from examples
	Fitting to accuracy values
	Fitting to accuracy differences

	CHAPTER The Facet Estimator
	Introduction
	Estimator features
	Secondary Structure Blockiness
	Secondary Structure Agreement
	Gap Coil Density
	Gap Extension Density
	Gap Open Density
	Gap Compatibility
	Substitution Compatibility
	Amino Acid Identity
	Secondary Structure Identity
	Average Substitution Score
	Core Column Density
	Information Content
	Results

	Software

	CHAPTER The Optimal Advisor Problem
	Introduction
	Learning an optimal advisor
	Optimal Advisor
	Advisor Set
	Advisor Estimator

	Complexity of learning optimal advisors

	CHAPTER Constructing Advisor
	Introduction
	Constructing optimal advisors by integer linear programming
	Modeling the Advisor Set Problem
	Finding optimal Oracle Sets
	Modeling the Advisor Estimator Problem
	Modeling the Optimal Advisor Problem

	Approximation algorithm for learning advisor sets

	CHAPTER Parameter Advising for Opal
	Introduction
	Experimental methods
	Comparison of advisor estimators
	Finding an estimator
	Comparing estimators to true accuracy

	Comparison of advisor sets
	Shared structure across advisor sets

	Application to parameter advising
	Learning advisor sets by different approaches
	Varying the exact set for the greedy algorithm
	Varying the error tolerance for the greedy algorithm
	Learning advisor sets for different estimators

	Software
	Opal version 3

	CHAPTER Aligner Advising for Ensemble Alignment
	Introduction
	Related work

	Constructing the universe for aligner advising
	Determining the universe of aligners
	Determining the universe of parameter settings

	Evaluating ensemble alignment
	Parameter advising
	Aligner advising
	Comparing ensemble alignment to meta-alignment
	Advising accuracy within difficulty bins
	Generalization of aligner advising
	Theoretical limit on advising accuracy
	Composition of advisor sets
	Running time for advising

	Software

	CHAPTER Adaptive Local Realignment
	Introduction
	Adaptive local realignment
	Identifying local realignment regions
	Local parameter advising on a region
	Iterative local realignment
	Combining local with global advising

	Assessing local realignment
	Effect of local realignment across difficulty bins
	Varying advising set cardinality
	Comparing estimators for local advising
	Effect of iterating local realignment
	Summarizing the effect of adaptive local realignment
	Running time
	Local and global advising in Opal

	CHAPTER Predicting Core Columns
	Introduction
	Related work

	Learning a coreness estimator
	Representing alignment columns
	Classes of column windows
	The coreness regression function
	Learning the distance function by linear programming

	Using coreness to improve accuracy estimation
	Creating a new coreness feature
	Augmenting former features by coreness

	Assessing the coreness prediction
	Constructing the coreness regressor
	Improving parameter advising

	CHAPTER Conclusions
	Further research

	REFERENCES

