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Abstract

Motivation: The minimizers technique is a method to sample k-mers that is used in many bioinformatics software
to reduce computation, memory usage and run time. The number of applications using minimizers keeps on
growing steadily. Despite its many uses, the theoretical understanding of minimizers is still very limited. In many
applications, selecting as few k-mers as possible (i.e. having a low density) is beneficial. The density is highly
dependent on the choice of the order on the k-mers. Different applications use different orders, but none of these
orders are optimal. A better understanding of minimizers schemes, and the related local and forward schemes, will
allow designing schemes with lower density, and thereby making existing and future bioinformatics tools even more
efficient.

Results: From the analysis of the asymptotic behavior of minimizers, forward and local schemes, we show that the
previously believed lower bound on minimizers schemes does not hold, and that schemes with density lower than
thought possible actually exist. The proof is constructive and leads to an efficient algorithm to compare k-mers.
These orders are the first known orders that are asymptotically optimal. Additionally, we give improved bounds

on the density achievable by the 3 type of schemes.
Contact: gmarcais@cs.cmu.edu ckingsf@cs.cmu.edu

1 Introduction

The minimizers technique is a method (Roberts et al.,
2004b,a; Schleimer et al., 2003) to sample k-mers from
a sequence. It has two important properties: (i) there
is no large gap in the sampling and (i) from simi-
lar sequences similar k-mers are sampled. Minimizers
help design algorithms that are more efficient both in
memory usage and run time by reducing the amount of
information to process, while not losing information.

The minimizers method is very flexible and has been
used in a surprising large number of settings, from the
original computation of read overlaps (Roberts et al.,
2004b,a), to counting k-mers (Li and XifengYan, 2015;
Deorowicz et al., 2015), reducing the genome assem-
bly de Bruijn graph (Ye et al., 2012; Li et al., 2013),
making sequence alignment faster (Li, 2016; Ondov
et al., 2016), to metagenomics (Wood and Salzberg,
2014; Kawulok and Deorowicz, 2015) and sparse data
structures (Grabowski and Raniszewski, 2015).

The minimizers method has two parameters, k the
length of the k-mers and w the maximum distance
between two sampled k-mers in the input sequence
(called the window size). Additionally, the minimizers
scheme is parameterized by the choice of a complete

order on the k-mers, for example the lexicographic or-
der. The minimizers scheme then selects in the input
sequence the smallest k-mer, according to the prede-
fined order, in each window of w consecutive k-mers.

Any choice of an order on the k-mers is valid in the
sense that properties (i) and (ii) above are satisfied.
The density, i.e. the expected number of selected k-
mers over the length of the input sequence, is affected
by the choice of the order on the k-mers. For many
applications, a lower density is preferable as it reduces
the amount of data to process. The density of any
minimizers scheme is at least 1/w, as at least 1 k-mer
is selected in each window, and at most 1, when every
k-mer in the sequence is selected. These are the trivial
bounds.

Although bioinformatics tool developers chose many
different orders for their applications, in most cases,
these orders are not an integral part of their algorithm.
That is, if one were to change the order in a given ap-
plication, the results returned by the application would
be unchanged or equivalent, although the run time or
memory usage may be different. Therefore, the de-
velopment of k-mer orders giving lower density would
benefit new and existing applications.

In addition to minimizers schemes, we consider two
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generalizations: local schemes and forward schemes.
Local schemes are the most general schemes as they
use any function defined on a set of w k-mers. The for-
ward schemes are local schemes with the additional re-
quirement that the k-mers are selected in an increasing
manner from the input sequence (minimizers schemes
are an example of forward schemes). From the more
specific to the more general schemes, we have

minimizers C forward C local.

Similarly, from the point of view of a bioinformatics
application, these other two types of schemes can be
used as a drop-in replacement of a minimizers scheme:
they have the same parameters £ and w, the same
input and output, and they satisfy properties (i) and
(ii).

Schleimer et al. (2003) showed an expected density
of 2/(w + 1) for some class of minimizers schemes and
showed a lower-bound of (1.5 + 1/2w)/(w + 1). This
later bound only applies to randomized and not all
local schemes as previously believed. Marcais et al.
(2017) used a heuristic method to create minimizers
schemes with density below 2/(w + 1), but still above
the (1.5 4+ 1/2w)/(w + 1) bound.

We study the asymptotic behavior in k£ and w of lo-
cal, forward and minimizers schemes. This study leads
to the realization that the previously believed lower-
bound on the achievable density of local schemes does
not apply. We give concrete examples of minimizers
schemes with density below that former lower-bound.
This opens up the field for much greater improvements
in density from minimizers, forward and local schemes.
Also, the results of this study gives directions for fur-
ther potential improvements.

We present three main results in this paper.

(I) For fixed w and asymptotically in k, we show
that there exist minimizers schemes that achieve op-
timal density. This is the first example of schemes
that achieve optimal density. Because minimizers
schemes are the most specific schemes, optimality is
also achieved by local and forward schemes, and this
completely characterizes the behavior for fixed w and
asymptotic in k.

(IT) For fixed k and asymptotically in w, we derive
new lower-bounds for minimizers and forward schemes,
which show that neither of these schemes can be opti-
mal when w is much larger than k. Furthermore, we
show that the local schemes are strictly more powerful
than forward schemes by finding optimal local schemes
for some parameters k and w with density not achiev-
able by forward schemes.

(III) We prove a lower-bound on the density of for-
ward schemes that is valid for all parameters k£ and
w. This lower-bound is a refinement of the bound pro-
posed by Schleimer et al. (2003).

Additionally, these results give two practical algo-
rithms. The first one computes a set of k-mers that
covers every path of length w in the de Bruijn graph
(an extension of the set cover problem). This prob-
lem was studied in Orenstein et al. (2017) and Margais
et al. (2017), and this new algorithm gives an asymp-
totically optimal solution. The second algorithm gives
the order between k-mers for the minimizers schemes
in (I). This algorithm is efficient as it only takes O(k)
time to compare two k-mers.

In the next section, we give precise definitions of the
various concepts and a statement of the main theo-
rems. Section 3 gives details proofs of the theorems,
followed by a discussion of remaining open problems
(section 4).

2 Approach

2.1 Definitions

Basic definitions. Let X be an alphabet of size o =
|Z|. If S € ¥* is a string on alphabet X, S[q, £] is the
substring of S starting at position ¢ and of length £.
In many cases in the following the strings are circular:
offsets in the string are understood modulo the length
of the string and a substring extending beyond the
end of the string wraps around to the beginning of the
string. The substring w = S[i,w + k — 1] represents
the sequence of a window w of w consecutive k-mers
starting at offset ¢ in S.

Schemes. A local scheme is a function that selects
a k-mer in a window of w consecutive k-mers, i.e. f :
ywth=l 50w —1].

A forward scheme is a particular local scheme where
the sequence of the starting positions of the selected
k-mers is an increasing sequence. Equivalently, a local
scheme f : X%+F=1 5 [0 : w — 1] is a forward scheme
if
Vw e XUl vr e B, f(wl,w+k—2]-2) > f(w)—1.

The dot is the concatenation operator and w[l,w +
k — 2] - z,Vx € X represents all the possible windows
following w.

A minimizers scheme is a particular local scheme
where the function returns the left-most position of the
smallest k-mer in the window. All minimizers schemes
are forward schemes, and forward schemes are local
schemes, but those sets are not equal to each other.

Density. The set of selected indices of a scheme f
on string S is
Stew(S) = {i+ f(S[i,k+w—1]) |i€0,[S] - 1]}

Because the scheme may select in adjacent windows the
same position in S, |Ssx.w(S)| < |S|. The particular



density of a scheme f on the circular string .S is the pro-
portion of k-mers selected: d¢ k. (S) = [St,k,w(S)|/]S].
The density of a scheme dy 1 ., is defined at the limit
as the expected density on an infinitely long sequence
with the characters selected IID (Independent Identi-
cal Distribution). The trivial bounds for the density
are 1/w < dy . < 1. Following Marcais et al. (2017),
we define the density factor df = d-(w+1), which rep-
resents the average number of k-mers selected in every
window of length w + 1. The trivial bounds for the
density factors are 1 +1/w < dff . < w + 1.

Computing density. A de Bruijn sequence of order
¢ is any circular sequence of length o such that every
possible substring of length ¢ occurs once and only once
in the string (de Bruijn, 1946). In the following, Dy
represents the de Bruijn graph of order /. A de Bruijn
sequence is obtained by reading the first base of every
vertex traversed by a Hamiltonian tour of a de Bruijn
graph Dy of order /.

Even though the density is defined as the limit of
an expected value on an infinite string, it can be com-
puted exactly (and not just estimated) as the particu-
lar density computed on a de Bruijn sequence of large
enough order (Margais et al., 2017). For any de Bruijn
sequence Sy of order £ > 2w + k — 2, the particu-
lar density of f on Sy is equal to the density of f:
dfkw = dfkw(Se). For a forward scheme, the mini-
mum order of the de Bruijn sequence is only w + k.

Universal set. A universal set is an unavoidable set
of k-mers: it is a set Uy, such that every path of w
nodes in the de Bruijn graph of order k contains a k-
mer from Uy,,. In other words, a universal set is a
set of nodes of Dy that covers every path of w nodes.
Equivalently, every string of length k& + w — 1 must
contain a substring of length k from Uy ,,.

There is a strong link between universal sets and
minimizers schemes. A minimizers scheme is compat-
tble with a universal set Uy ,, if every k-mer of Uy,
compares less than any k-mer not in Uj,,. There is
more than one order which is compatible with a univer-
sal set, as the relative order of the k-mers within Uy
is not constrained by the definition. Although this rel-
ative order may change the density of the scheme, it is
not relevant in our asymptotic analysis.

2.2 Main results

Behavior asymptotically in k. We show that for
any fixed value of w, there exists a sequence of min-
imizers schemes that asymptotically achieve optimal
density, i.e. one k-mer per window or 1/w. These are
the first proposed orders that achieve close to optimal
density. It is also the first orders to have density factors
below 1.5+ (1/2w), which was formerly considered the

lowest possible density factor. Surprisingly, this opti-
mal density is attained with minimizers schemes, the
weakest type of schemes.

The sequence of minimizers schemes is created from
universal sets. The following Lemma shows an im-
portant link between universal sets and minimizers
scheme: the size of a universal set upper-bounds the
density of any compatible minimizers scheme.

Lemma 1. Given a minimizers scheme fy compatible
with a universal set U, the density satisfies

Ul

dfy ew < e

The strategy is then to construct a sequence of uni-
versal sets whose sizes get close to o* /w. This gives us
our first main result, that optimal minimizers schemes
exist asymptotically in k for alphabet of even sizes.

Theorem 1. On an even alphabet, for any fized w,
there exists a sequence of universal sets Uy asymptot-
ically of optimal size, and a sequence of minimizers
schemes fi asymptotically of optimal density.

The proof of this theorem relies on a geometric ar-
gument. The de Bruijn graph is embedded in a w-
dimensional space, a hypercube with w dimensions,
such that the k-mers mapping into a particular vol-
ume of the cube is a universal set. Then, we show
that asymptotically the number of k-mers mapping
into that volume represents a proportion 1/w of the
total number of k-mers. This line of proof is a general-
ization of the construction of asymptotically minimum
vertex cover by Lichiardopol (2006).

Behavior asymptotically in w. The previously
mentioned bounds on density of 2/(w + 1) might give
the impression that, as w gets large, arbitrarily small
density can be achieved. It is not the case for mini-
mizers schemes which have a lower limit on the density
greater than 0.

Theorem 2. For any minimizers scheme f, the den-

sity df . converges asymptotically in w to ok
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Forward schemes and local schemes do not have such
a lower-bound on their density, and we will construct
a forward scheme with a density going to 0 asymptot-
ically in w. In such cases, it is more meaningful to
speak of the density factor. The lowest density factor
for minimizers is (w), while the lowest density factor
for forward schemes is O(y/w).

Forward schemes bound. Finally, we prove a
lower-bound on the density for forward schemes, which
holds for any parameters k and w.



Theorem 3. The density of any forward scheme sat-
isfies

1.5+ max (0, [£=2]) 4+ L

d > 2w
fikaw Z w+ k

Asymptotically in w, this bound implies that the
best density factor for forward schemes is > 1.5. This
is much lower than the lower-bound for minimizers
schemes, although it is not known yet how to con-
struct a forward scheme approaching that lower-bound
for large values of w.

3 Proofs of main theorems

3.1 Minimizers asymptotic behavior in
k

We consider in this section the behavior of minimizers
schemes when the length of the window w is fixed while
the length of the k-mer goes to infinity. In particular,
we will construct asymptotically optimal minimizers
schemes. Given that a local scheme must select at least
one k-mer in each window, the minimum density is
> 1/w. So, more precisely, we construct a minimizers
scheme f such that dy R 1/w. To do so, we

use the link between universal sets and orderings.

Recall that given a universal set U, a set that inter-
sects every w-long path in the de Bruijn graph Dy .,
the minimizers scheme f is compatible with U if every
k-mer of U compares less than any k-mer not in U.
The following Lemma explains the fundamental link
between universal sets and orderings.

Lemma 1. Given a minimizers scheme fy compatible
with a universal set U, the density satisfies

U]
dfy ko < R

Proof. Let Sy be a de Bruijn sequence of order ¢ >
w + k. Because U is a universal set, every window of
w consecutive k-mers contains at least one element of
U, hence all the selected k-mers are from the set U.
Therefore, Sy, 1w contains, at most, all the positions
in S of the k-mers of U. Moreover, every k-mer occurs
exactly /~F times in S;. Hence
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This Lemma gives a simple lower-bound on the size
of a universal set for a de Bruijn graph. Define 3,,(G)
to be the minimum size of a universal set for a graph G
that hits every path of w vertices. This notation is an
extension of the definition of the size of the minimum
vertex cover: f2(G) = B(G).

Proposition 1. The minimum size of a universal set

satisfies:
k
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Proof. Let U be a universal set of minimum size,
|U| = Bw(Dk), and fy a minimizers scheme com-
patible with U. By Lemma 1

Ul i

U o
< de,k,w < F - 5w(Dkao—) >

. @
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A second consequence of Lemma 1 is that a sequence
of universal set U that is asymptotically optimal, i.e.
such that |Uy|/o* = 1/w, gives a sequence of min-

— 00

imizers schemes fy, which is also asymptotically opti-
mal, ie. dg, P 1/w. The remainder of this
— 00

k,w
section describes how to construct such a sequence
of universal sets. This construction is similar to the
construction of an optimal vertex cover (Lichiardopol,
2006) and of an optimal decycling set (Mykkeltveit,
1972).

3.1.1 Naive extension

Given a universal set U that hits every w-long path in
Dy, .+, we can easily construct a universal set that hits
every w-long path in Dy ,. The set U-X obtained by
concatenating every letter of the alphabet ¥ to every
element of U is called the naive extension. The naive
extension of a universal set U in Dy, , is a universal set
in Dg41,0 for w-long paths, but the naive extension
may not be of optimal size, even if U is of optimal
size.

The naive extension shows that the minimum size
of a universal set, in proportion, is a non-increasing
function as the length of the k-mers increases.

Proposition 2. The function k — Bu,(Dy.,)/c" is
Non-increasing.

Proof. Let Uy, be a universal set of minimum size, i.e.
|Uk,w| = Bw(Dg,»). Consider now the naive extension
Uk, - £. The size of the naive extension is |Ug, - X| =
0|Ug w|- Then,

5w(Dk+1,a) |Uk,w : E| _ |Uk,w| _ ﬁw(Dk,J) (3)
ok+1 = ghktl gk ok :

O O

In the following construction, we only consider a
subsequence of universal sets, where k is a multiple
of w. Nevertheless, using the naive extension, the sub-
sequence can be extended to a non-increasing complete
sequence of universal sets that is asymptotically opti-
mal.



3.1.2 Embedding of the de Bruijn graph

The universal set is created by embedding the
de Bruijn graph in a w-dimensional space and pick-
ing a region of the space that intersects every path of
length w. Using a mapping (called 1, ), we embed the
de Bruijn graph Dy in a w-dimensional hypercube C,,,
where edges in Dy, correspond approximately to a ro-
tation around a diagonal of the hypercube (a rotation
plus a small translation). The hypercube is then split
into w volumes, or wedges called W, i € [0,w — 1], of
equal size, and one of them is selected, say Wy. Be-
cause of the edges do not correspond perfectly to a
rotation, the k-mers mapping to the wedge Wy do not
constitute a universal set. Therefore, we enlarge the
wedge Wy to get a universal set: Wy is the wedge W
augmented with thin “slabs” at the frontier between
Wy and the other wedges. The set Wy is such that
any path of w vertices in Dy, contains at least one ver-
tex that maps to Wy. Finally, the universal set is any
k-mer that maps into the wedge Wy, that is the set
Yy (Wo).

By construction, the same number of k-mers maps
to any of the w wedges. The technical part of the proof
below is to show that the number of k-mers mapping
into the extra slabs is negligible as k — oc.

In the following, we assume that w divides k and set
n = k/w. Also, the alphabet is mapped to the integers
{0,...,0 — 1}. For a k-mer m, define the functions

biwlm) = 3 mljw +1] @)
=0

VY (m) = (¢0,w(m), q/jl,w(m)a e a¢w—1,w(m))- (5)
i w(m) sums every wth bases of m, starting at base
i. Yiw(m) is an integer in the range [0 : n(c — 1)].
Then ,,(m) is a w-dimensional vector that maps a
k-mer to a point with integer coordinates inside a w-
dimensional hypercube of side length n(c — 1) +1 (see
Figure 1).

The mapping 1, has an important property: an
edge in the de Bruijn graph corresponds to a rota-
tion in the space, plus a translation along the last
coordinate of length at most ¢ — 1. More precisely,
given an edge m — m’ in Dy, the suffix of m is equal
to the prefix of m': m/[i] = m[i + 1],7 € [0,k — 2].
Hence, there is a shift in most of the coordinates in
the mapping: ;. (m') = Vit1,0(m),i € [0,w — 2].
Only the last coordinate of 1, (m’) is not directly equal
to a coordinate of 1,,(m), but rather ¥,_1 ,(m') =
Yo, (m) —m[0] +m/[k — 1]. In other words, 1., (m’) is
obtained from ,,(m) by rotating all the coordinates
and adding a vector § which has only one non-zero
coordinate ojw — 1] € [-(c — 1) : 0 — 1]

Yo(m') = (Y1,w(m), . ..

5 'l/)w—l,w(m)v 1;[}0,11; (m)+5[w_1])

Figure 1: The cube C,, for w = 3. The vertices V; have
their ith coordinate equal to n(c — 1), where n = k/w,
and all other coordinates equal to 0. The wedge W;
is the part of the cube of the points whose ith coordi-
nate is greater than the others, which includes vertex
Vi. The hyperplanes separating separating wedge W;
and W; is orthogonal to the vector V;V;. An edge in
the de Bruijn graph corresponds to a rotation of 27w /w
around the line OO¢,,, followed by a translation along
the (w — 1)th coordinate of at most o.

We define the wedge W; as the points in the hy-
percube whose ith coordinate is greater than all the
other coordinates. Let V; be a vertex of the hypercube
whose only non-zero coordinate is the ith coordinate.
If x € Wy, then its Oth coordinate is greater than its
ith coordinate: z[i| — z[0] = VoV, - 7 /(n(oc — 1)) < 0.
The wedge Wy is then equivalently defined as the vol-
ume bounded by the w — 1 hyperplanes orthogonal to
the vectors VpV;, i € [1,w — 1]

—
0Viq

VoVi
n(oc —1)

Notice that the hyperplanes separating the wedges are
not contained in any of the wedges, and therefore the
wedges are disjoint and have the same size.

The rotation of the coordinates correspond geomet-
rically to a rotation around the vector (1,...,1), and
this vector is contained in the intersection of all the
hyperplanes.

Ignoring at first the points on the hyperplanes, take
a point x of C,: it is in one of the wedges, say W;.
The rotation of the coordinates of = gives a point in
Wi_1 (or Wy,—1 if ¢ = 0). Hence, either z is in Wy or
one of its w — 1 consecutive rotations is in Wy. If it
were not for the additional translation by §, the k-mers
mapping to Wy would constitute a universal set.

Starting from a k-mer m that maps to point x, any

W(): {.’EECw

~?E'<0,Vi€[1,w1]}.



k-mer reachable from m by a path of at most w — 1
edges maps to a point where each coordinate differs
from a rotation of z by at most o. To compensate
for 6 and the points on the hyperplanes, we extend
the wedge Wy by pushing the hyperplanes back by o
(i.e., we add some slabs parallel to the hyperplanes of
thickness o):

—
0Vi

WV

WO{IECw m

T <o,Vie [1,w1]}.

By construction, the set 1, 1(W) is a universal set.
The slabs have a thickness of o, which is a constant
independent of k, hence only w — 1 dimensions of the
slabs grow with k& and the volume of the slabs is in
proportion a negligible volume of the hypercube as k —
oo. The slabs are represented by the set s = Wy \ W.
It remains to show that the number of k-mers that
map into the slabs, i.e. 1, 1(s), is also asymptotically

negligible compared to the total number of k-mers o*.

3.1.3 Asymptotic size of the universal set: bi-
nary alphabet

By the symmetry of the definition of the mapping
function and of the wedges, the same number of k-
mers map to each wedge, therefore |, 1(W;)| is in-
dependent of ¢, and because the wedges are disjoint,
| (W;)| < o /w. All the hyperplanes are contained

in W, and therefore |11 (Wo)| > 0% /w. Hence,

9w (Wo)] [ Vo)l _ [e (Wo)l |, [v5(s)|
k < = k + k
o o

(6)
and it suffices to show that the proportion of k-mers
mapping into s, i.e., ¢ 1(s)|/c¥, is asymptotically 0.
Let’s first assume that the alphabet is binary, o = 2.

1<
w = ok o

Proposition 3. The slabs are asymptotically negligi-
ble:
—— —— 0.
2k k—o0
Proof. The number of ways to sum up n binary num-
bers to a value v is (Z) Hence, the number of k-mers

mapping to & € Cy, is H?;Ol (;[‘Z]) The point at the
center of the cube O¢,, = (n/2,...,n/2), which is also
in all the slabs, has the largest number of k-mers map-
ping to it: (n7/’2)w. The volume of a slab, which is
bounded by an hyperplane and of thickness o = 2, is
O(nv=1).

The images of the mapping 1, are the points with
integer coordinates, and these points are evenly dis-
tributed through out C,,. Hence, the number of points
in a slab is proportional to its volume. We can
therefore get an over-estimation of the number of k-
mers mapping into the slabs by estimating the num-
ber of k-mers mapping to any point in the slab as

the (n72)w (the maximum possible), and then mul-
tiply by the volume. Unfortunately, the approxima-
tion of the proportion of k-mers in the w — 1 slabs of
O((w — 1)(n72)wnw’12*k) is too crude and does not
converge to 0 when k (hence n) goes to infinity.
Instead, we split the slabs into 2 parts: (I) the points
within a small hypercube C, centered at O¢, and of
side length 2(n/2)%; (II) the points outside of that
hypercube. As we shall see, choosing 1/2 < a <
w/2(w — 1) gives the desired convergence. We use
(n%)w as an upper-bound on the number of k-mers
mapping to the points in C,. For the points mapping
outside of Cq, i.e. in the complement Cg, at least one
coordinate is at distance > (n/2)® from n/2. The max-
imum number of k-mers mapping to a point x of Cg
is when all the coordinates are equal to n/2, except
for one equal to n — (n/2)® or n+ (n/2)“. Because of
the symmetry of the binomial coefficient around n/2,

(n/Z—?n/Q)Q) (T:/’Q)wfl is an upper-bound on the num-
ber of k-mers mapping to a point outside of C,.

In the following O expressions, w and ¢ = 2 are
constants and will be included in the constant in the
O, while k and n = k/w go to infinity.

For (I), from the Stirling approximation (;2) ~
22405/, /rx, and the volume of the intersection of C,
with the slabs of O(w(n/2)*"~1), we have:

W (CanS)| - ((2HO5\Y  pya@o1)
21@—0(< 7 ) w(3) 2!@)
(7)

=0 (2;:]7104(111—1)—11)/2> (8)

= O (netemmwr2), ()

In equation 8, recall that nw = k. Therefore, |1 (CoN
S)|/2* converges to 0 if the power of n in equation 9 is
negative, that is if C,, is not too large and oo < w/2(w—
1).
For (II), also from Stirling approximation, we have
the equivalence

T xa:+0.5
() ~ T

Let n’ =n/2, then x = n and y = n’ — n/*. Then, the
denominator of the binomial coefficient is (except for
the v/2m factor):

(n/ . n/a)n/*’ﬂlourowr) (TL . ’I’L/ + n/a)n*n/+n/a+0~5 (10)
— it (1 B n/a,l)n’—n/“+o.5 (1 I n/a,l)n’+n’a+o.5

(11)
~ 27(n+1)nn+1 exp (271//20‘71) (12)

Hence, the proportion of k-mers mapping in the slab



outside of C, is:

nn+0.5wnw712n+1

[vp'(CanS)|

En

Qk 2kn7z+1 exp(2n/2a—1)
(13)
onw nw/271
=0 —F———— |- 14
(2k exp(2n’2a1)> ( )
In equation 14, both n = k/w and n’ = n/2 grow

linearly with k. Therefore, the proportion |15 (CE N
S)|/2F converges to 0 when the power of n’ in the ex-

ponential is positive, that is when C, is large enough
and o > 1/2. O O

The following proposition is then a direct conse-
quence of Proposition 3 and Lemma 1

Proposition 4. On the binary alphabet, for any fived
w, there exists a sequence of universal sets Uy asymp-
totically of optimal size, and a sequence of minimizers
schemes fi asymptotically of optimal density.

3.1.4 Asymptotic size of the universal set:
even alphabet

We now extend the previous result to even alphabets.
Let’s assume that the alphabet X is even: |X| =0 =
20’. We construct a graph homomorphism (Lichiar-
dopol, 2006; Lempel, 1970) from the de Bruijn graph
Dy, » of order k on the alphabet of size o onto the
de Bruijn graph Dy, 2 of order k on the binary alpha-
bet. Consider the function g(x) = |z/0o’|. In other
words, g maps the first half of the alphabet X to 0 and
the second half to 1. Then, consider ¢ : Dy, — Dj 2
which applies g to each base of a k-mer by ¢’. That is,
y = @(x) implies that y[i] = g(z[i]),7 € [0,k — 1].

It is simple to check that ¢ is an onto function
and a graph homomorphism: if (m,m’) is an edge of
Dy, », then so is (¢(m), ¢(m’)) in Dy . Inductively, if
mi,..., My is a path of Dy ,, then p(mq),...,o(my,)
is a path of Dy, 5. Therefore, if U,, 5 is a universal set in
Dy, o that intersects every path of w vertices, then the
set Uyo = ¢ 1 (Uy,2) is also a universal set of Dy ..
Moreover, the same number of letters of ¥ map to 0
and to 1: [¢g71(0)| = |g~(1)] = o/. Then the number
of k-mers of Dy, , that map to a k-mer m of Dy, is

k

e )

k-1

o~ (m)[ =[] lg™" (mli]))] = o™
i=0

We can now prove a generalization of Proposition 4.

Theorem 1. On an even alphabet, for any fired w,
there exists a sequence of universal sets Uy asymptot-
ically of optimal size, and a sequence of minimizers
schemes fi. asymptotically of optimal density.

)

Proof. Let Uy, 2(k) be the sequence of universal sets of
Dy, o constructed in the proof of Proposition 4. Then
Uw.o(k) = 97 (Uy,2(k)) is a sequence of universal sets
of Dy, where |Uy (k)| = |Uy2(k)|o*/2%. Therefore,
by Proposition 3:

Up,o(k Up,2(k)|o* 1
Vo 0] _ Vu2)lo 1 g
ok 2kgk k—oo W
Lemma 1 proves the second part of the statement. [
O

3.2 Minimizers asymptotic behavior in
w

We now consider the converse problem where the
length of the k-mer is fixed and w grows to infinity.

Proposition 5. For any minimizers scheme f and
any fized k, the density function w — df k. 15 non-
INCreasing.

Proof. Let Sy+k+1 be any de Bruijn sequence of or-
der w+k+ 1. Let py = St kw(Swtk+1) and pyp1 =
Stkwt+1(Swtk+1) be the set of the positions of the
minimizers in Sy 414, when computing the minimiz-
ers for w and w + 1 respectively. Because the order
of the de Bruijn sequence is large enough, df . =
Ipw|/oc¥T1HE and df w1 = [Pwr1]/oTITE. We now
show that p,,41 is a subset of p,,.

Let £ = w+k—1. Consider the windows Sy k111, ¢
and Syik+1[i,¢ + 1], containing w and w + 1 k-
mers respectively, both starting at base ¢ in Sy414%.
Swtk+1], £ + 1] contains one extra k-mer compared
to Swtk+1li, €], the right-most k-mer starting at posi-
tion 7 + w. Hence, if a different minimizer is selected
in these two windows when computing minimizers for
w and w + 1 respectively, then the k-mer at position
i+w must compare less than any k-mer in Sy x+1[4, £].
Then the k-mer at position ¢ + w also compares less
than any k-mer in Sy4xt1[i + 1,¢], and the position
1+ w is also in py,. O O]

This previous proposition and the previously known
lower-bound on the density, such as 2/(w + 1), might
suggests that the density of a minimizers scheme goes
to 0 asymptotically in w. That is not the case however,
as shown in this next proposition.

Proposition 6. For any minimizers scheme f,
df,k,w > Uﬁk'

Proof. Let pu be the k-mer that is the lowest for the
ordering f. In the minimizers scheme, every instance
of p in the sequence is the left-most smallest k-mer
for some window. Hence the algorithm selects as
minimizers every instance of p. In a de Bruijn se-
quence of order w + k, every k-mer occurs the same
number of times, ¢" times. Hence the density is
> oV oWtk = g7k, O O



As the consequence, the expected density factor is
not a constant but rather grows at least linearly >
(w + 1)/o*. Moreover this lower-bound is tight.

Theorem 2. For any minimizers scheme f, the den-

sity dy . converges asymptotically in w to o~ *:

Proof. Let Si4., be a de Bruijn sequence of order k+w
and p the smallest k-mer for the ordering f. In every
window that contains p, it is the selected minimizer.
Let A, be the set of all the windows of Sk, that do
not contain p. As a worst case scenario, assume that in
every window of A,,, a different minimizer is selected.
In that worst case, the set of selected positions contains
all the 0% instances of p in Sk, and one position in
each of the windows of A,,. This gives us an upper-
bound on the density:

A w(Swik) = Sl <t [Aw] _ 1 @
2 owtk — owtk ok owtk

(17)
We will show that as w increases, the proportion
|Aw|/aVT* goes to zero, in other words most windows
contain p and the only k-mer that matters with respect
to the density is pu.

Because S, is a de Bruijn sequence, every possible
window of w consecutive k-mers occurs exactly o times
in S,,+1. Hence, the proportion of interest |A,,|/c% ¥
is exactly the probability of the event that p is not in a
window, and we can use a probabilistic argument. The
event that a window w does not contain the k-mer p is
a subset of the event that the non-overlapping k-mers
starting at positions i - k,¢ € [0 : |w/k]] are not equal
to p. Hence,

ﬁi;'f =Prjp¢w] < (1 - Ulk) - (18)
< exp (—%) . (19)

For a fixed k, as w goes to infinity, this proportion goes
to 0. Equation 17 combined with proposition 6 gives
the desired limit for d¢ j ., for all minimizers scheme

1. O O

Theorem 2 shows that for very large w, all the min-
imizers schemes are equivalent. Intuitively, when w
is very large, say w > oF, every window of w con-
secutive k-mers is expected to contain every possible
k-mer. Hence almost every window contains u, the ab-
solute lowest k-mer, and almost no other k-mer but p
is selected as a minimizer. This happens for any order
on the k-mers.

For minimizers schemes, the density factor is 6(w),
that is it grows linearly. This does not apply for local
and forward schemes as the next proposition exhibits

a forward scheme whose density factor is O(y/w), and
therefore a density whose limit is 0 at infinity. The
insight for that proof is that a minimizers scheme for
parameters k’,w’, different from k,w, is a valid local
scheme for parameters k,w, so long as w’ < w and
k' + w' < w + k. This holds because any function
taking a string of length at most w+ k — 1 and returns
a value within [0,w — 1] is a valid local scheme.

Proposition 7. There exists a forward scheme whose
density factor is O(y/w).

Proof. Let’s set k' = log, (v/w) and w’ = w+k—k’ and
consider a minimizers scheme f’ for parameters k’, w’.
For large values of w, w’ < w, and f’ returns an offset
in [0,w" — 1] C [0,w — 1], hence f’ is a valid forward
scheme for parameters k,w. In a de Bruijn sequence of
order w + k, the minimum k-mer g’ of the ordering f’
occurs g tE—k times, hence, following the same proof

as Theorem 2, the density of f' on S,y satisfies

_ 1Skl otk AL

df’,k,w(5w+k) T Tgutk & otk (20)
w+k—k
< L A

— O_k,/ + eXp ( k,O_k/ ) ? (21)

where A/, is the set of windows not containing y’. Con-
sequently, the density factor satisfies

w1 w+k—Fk
dfpr kw < o + (w+ 1) exp (_k’cfk’) (22)
<w—|—1 w~+ k — log, (v/w)

+ (w+1)exp <—

= Vo log, (vw)v/w

(23)
Asymptotically, expression 23 is O(y/w). O O

Forward schemes do not necessarily have a linear
growth for the density factor. The lowest asymptotic
density factor achievable by local schemes and forward
schemes is still an open question.

3.3 Lower bound on forward schemes

When introducing the winnowing scheme, Schleimer
et al. (2003) provided a lower-bound on the density
factor for local schemes of 1.5+1/(2w). Unfortunately,
their definition of a local scheme differs slightly from
ours as they assume that the input k-mers are first
hashed into fingerprints and that those fingerprints can
be assumed independent and uniformly distributed.
This is a weaker setting than what is considered here.

Moreover, their theorem does not apply to all local
schemes, but only to forward schemes. For a forward
schemes, instead of counting the number of selected
k-mers, we use instead charged windows. A window is
charged if it is the window with the smallest starting



position where a given k-mer is selected. More pre-
cisely, for a forward scheme f, a window is charged
if its selected k-mer is different than in the preced-
ing window, i.e the window w; starting at position ¢ is
charged when i+ f(w;) > i—14 f(w;—1). For a forward
scheme, the number of charged window is equal to the
number of selected k-mers and the density is equiva-
lently computed from the number of charged windows.
This property, which is not satisfied by general local
schemes, is explicitly used in the proof of Schleimer
et al. (2003) and in the proof of the following theorem.

The theorem below is a refinement of Theorem 1
of Schleimer et al. (2003) and it uses the same proof
technique. The idea is to look at two windows that are
disjoint, and therefore the choice of a selected k-mer
in each window is independent from the choice in the
other window, and to estimate the number of k-mers
that must be selected between the two windows. We
first have a Lemma.

Lemma 2. Let X andY be two discrete random vari-
ables with values in {0, ..., w — 1} which are indepen-
dent and have the same distribution. Then, Pr[X >
Y] >1/24+1/2w).

Proof. Because X and Y are IID, Pr[X > Y] =
Pr[Y > X], hence

1—Pr[X =Y]

Pr[X > Y] = 5 (24)
Pr[X > Y] = W. (25)

We now get a lower bound on Pr[X = Y]. Let @
be a vector whose coordinates are Pr[X = i] for i €
{0,...,w—1}, and let T be the vector of all 1s. Because
the variables are IID, Pr[X = Y] = ||@]|?, and by the
Cauchy-Schwartz inequality

T-a@ =1 < |I|*al* =wPrX =Y]  (26)
O O

Theorem 3. The density of any forward scheme sat-
isfies

1.5 + max (0, [ 22 ) + &

d > 2w
fikaw = w+k

Proof. Let f : ¥*F=1 — [0,w — 1] be a forward
scheme, and consider two windows of w consecutive
k-mers, w; = S[i,w + k — 1] and wy = S[i + w +
k + 1,w + k — 1], starting respectively at base i and
i+ w+k+1 (see Figure 2). The last base of w; is
at index ¢ + w + k — 2, hence there is no shared se-
quence between the two windows, and a gap of 2 bases
between the two windows. Without loss of generality,
we can assume that the input sequence is a de Bruijn
sequence of large enough order so that every possible

First base wy I

S -é
Last k-mer w; i+w—1 -
Last base wy i+w+k—2-

First base wo  i+w+k+1-

82 -€
i+2w+k 4

Last k-mer wo

Last base wy i+ 2w + 2k — 14—

Figure 2: The sequence is by a thick vertical, and each
base is a tick mark. In this example, £k = 3, w = 4,
X1 = f(w1) = 1 and Xy = f(wz2) = 2. The first
base, last k-mer start and last base of w; and wy are 1,
i+w—1,i+w+k—2andi+w+k+1,7+2w+k,
t + 2w + 2k — 1 respectively. The selected k-mers are
marked with a circle at positions s; and s3. A is the
number of bases between, and excluding, the selected
k-mers. There are w + k windows that can be charged
after wy and before ws, between bases i+1 and i+w-+k
included.

pair of windows w; and ws is encountered, the same
number of times. We can therefore use a probabilistic
argument: the starting position ¢ is chosen at random,
consequently the strings wy and wo are IID.

We are counting the number of charged windows
starting at positions in the interval [i+1,i+w+k], that
is all the windows after w; and before wy. Consider the
random variables of the offset of the selected k-mer in
each window, X; = f(w1) and X2 = f(w2). Because
the windows w; and ws do not share any sequence, X1
and X5 are independent and have the same distribu-
tion. The respective positions of the selected k-mer in
wiand wyis sy =i+ X;and so =i+w+k+1+ Xo.

At least one window with starting index in [i+1, 51+
1] must be charged, as the k-mer selected in window
wi is not in the window starting at position s; + 1.
Moreover, additional windows must be charged if the
number of bases between s; and s, (excluding bases at
s1 and s9) is larger or equal to 2w. If A is the distance
between s and so, the number of extra k-mers to select
is [(A —w)/w| if A > w, 0 otherwise. The number of
bases between these two selected k-mers is

A=w+k+Xo— X1 =(lk/w]+Dw+r+ Xy — X,

where k = |k/w]|w + r. Given that both X; and X»
are in [O,w—1] and r >0, Xo — X7 +r > —w+ 1.
Therefore A > |k/w|w and at least an extra |(k —
w)/w] windows must be charged (provided that k& >
w).



When A > (|k/w] + 1)w, or equivalently when
X5 > X7 — r, at least one extra window is charged.
By Lemma 2, this event occurs with probability

1

Pr[XQZler] ZPY[XQZX1]> B) .
w

1
-2
Hence, in any interval [i + 1,4 + w + k] of length
w + k, the expected number of charged windows is
at least 1.5 + max(0, | (k — w)/w]) + 1/(2w), and the
density of charged windows is as stated. O O

This lower-bound is tight for some extremal cases.
For w = 1, the lower-bound on the density is 1, which
is the value of the density factor for any scheme. When
k — o0, the lower-bound on the density goes to 1/w,
which is achieved asymptotically by the orderings con-
structed in Section 3.1.

On the other hand, when w — oo, the lower-bound
on density factor goes to 1.5. It is still an open question
whether this bound can be reached asymptotically by
a forward scheme.

4 Discussion

4.1 Asymptotic behavior in w.

Figure 3 summarizes the known upper and lower-
bounds for local, minimizers and forward schemes, for
a fixed parameter k and varying w.

The dashed lines show the upper and lower-bound
for minimizers schemes. In addition, we computed
through exhaustive search (there are “only” 23! =
40 320 different orderings) the actual lowest and high-
est density factor achievable for £k = 3 and w € [1,27].
These values are shown in gray, and the inset zooms in
on that region of the graph. The minimizers scheme is
the most understood scheme, and the known bounds
are tight asymptotically in w. Theorem 2 shows that
for very large w, all the minimizers schemes are equiv-
alent, as the number of selected positions is dominated
by the occurrences of the lowest k-mer i, and this num-
ber is the same for any ordering. This is responsible
for the linear lower-bound on the density factors. Local
and forward schemes do not have that inherent limita-
tion (see Proposition 7).

The thicker lines show the upper and lower-bounds
for the local schemes. The upper-bound is tight, as
the constant function f(w) = 0, that always picks the
first k-mer in any window, selects every k-mer in the
sequence and therefore has a density factor of w + 1.
On the other hand, it is not known if the trivial lower-
bound for local schemes (i.e. one k-mer per window
hence a density factor of 1+ 1/w) is tight or not, even
for asymptotic w. Theorem 3 shows that this trivial
lower-bound cannot be achieved by a forward scheme
(the thin line).

20

15

10

density factor df

,f/FS LBS LB o o | I
- | 0 10 20

: | |
0 50 100 150 200

w

Figure 3: For a binary alphabet ¢ = 2 and a fix value
of k = 3, this plots show the upper-bound and lower-
bound for the local-schemes (thick lines “LS UB” and
“LS LB”) and for the minimizer-schemes (dashed lines
“MS UB” and “MS LB”). The thin line “FS LB” is the
lower-bound for forward scheme. In addition, in the
inset, the gray lines show the actual best and worse
density factor achievable by a minimizer schemes for
k = 3 and for w € [1,27].



Local schemes are more powerful. It would be
conceivable that for any set of parameters k, w, there
is always a forward scheme that is among the local
schemes with the lowest density. Then, the lower-
bound of Theorem 3 would also apply to local schemes.
However, this is not the case. By formulating the prob-
lem of finding a local scheme with lowest density as an
Integer Linear Program (ILP), we found set of param-
eters (e.g. k =2 and w = 4) where none of the lowest
density solutions are forward schemes. Therefore, the
lower-bound on forward schemes may not apply to lo-
cal scheme in general.

The local schemes is the largest class of schemes
and the least understood. In fact, most of what is
known about local schemes is derived from our knowl-
edge of the minimizers schemes and forward schemes.
The previous remark shows that the local schemes are
strictly more powerful than the other type of schemes,
and that the lower-bounds on the density that were
previously thought to constrain local schemes (say
d > (1.5 4+ 1/2w)/(w 4+ 1)) may not apply. New in-
sights and a deeper understanding of local schemes are
necessary to design local schemes with even lower den-
sities. For example, to achieve a low density, a local
scheme must not be a forward scheme, that is it must
sometimes do backward jumps (i.e. pick k-mers in a
non-increasing manner). Why such backward jumps
are beneficial to reduce the number of selected k-mers
is not yet understood.

4.2 Asymptotic behavior in k.

Figure 4 shows, for varying values of w, the density
obtained by orderings compatible with the universal
sets constructed in section 3.1. The orderings are con-
structed such that k-mers mapping into the wedge W
compare less to the k-mers mapping into the slabs, who
also compare less than the k-mers mapping outside of
Wo. Ties are resolved using lexicographic order.

For w = 2, and k > 14, the density factor obtained
is below 1.5 + 1/(2w) = 1.75, that is below what was
previously thought possible. Moreover, such a range of
values for the parameters k& and w is potentially use-
ful for some applications. According to Theorem 1,
all of the curves on Figure 4 have an asymptote of
1+ 1/w, although such low density factors may be
reached for relatively large values of k, larger than use-
ful in practice. Better orderings compatible with the
universal sets than the simple one used here might exist
to achieve lower density for smaller values of k. Also,
even though local schemes are not asymptotically in &
more powerful than minimizers schemes, local schemes
might achieve lower densities for smaller values of &
and therefore be more practical than the order used
here.

One benefit of the construction of the universal sets
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Figure 4: Each curve represents, for a fixed value of
w, the density factor as a function of k obtained by
minimizers schemes compatible with the universal sets
constructed in section 3.1. The value of w is written
above the top left most point of each curve. The hori-
zontal dotted line shows the previously believed lower
bound for w = 2.

in section 3.1 is that it can be implemented as a test.
That is, there is an indicator function using O (k) mem-
ory and O(k) time to check if a k-mer is in the universal
set: for a given k-mer m, computing the vector v, (m)
requires k additions. There is no need to pre-compute
the universal set or hold it in memory. Similarly, the
comparison between two k-mers takes O(k) time.

Minimum size universal sets. In Orenstein et al.
(2017), we proposed the problem of finding universal
sets of minimum size in the de Bruijn graph, and gave
a heuristic algorithm to find small, although not neces-
sarily minimum, universal sets. In particular, the use
of a heuristic was justified by the difficulty of find-
ing vertex cover for path of length ¢ in a Directed
Acyclic Graph (DAG) (Paindavoine and Vialla, 2015).
Although this problem is NP-hard for general DAGs,
the construction given in section 3.1 provides a solu-
tion that is asymptotically optimal in the particular
case of de Bruijn graphs.

Cycle structure of the de Bruijn graph. In the
following we propose a high level and intuitive descrip-
tion of why the construction given in section 3.1 works
asymptotically, when k is much larger than w. Con-
sider a cycle C— of length £ = w in Dj. This cycle
could have one node in each of the wedges W;. On



the other hand, a smaller cycle C. of length ¢ < w
cannot have a node in each of the w wedges. There-
fore, it must have some nodes, if not all, inside of the
slabs, close to the diagonal of the hypercube C,,. For a
larger cycle Cs of length ¢ > w, if £ is a multiple of w,
the cycle could rotate around the wedges W;, with no
nodes falling in the slabs. If ¢ is not a multiple of w,
some nodes of Cs, but not all, must fall in the slabs
as well.

Let Cy¢ be the number of cycles of length ¢ in Dy.
For a fixed ¢, the function k& — Cj, ¢ is increasing until
k =€ —1, then it is constant (Maurer, 1992). In other
words, when k becomes large, the number of cycles
of length < w remains constant, while the number of
larger cycles grows, and it grows very quickly. Asymp-
totically, we can “ignore” the fine grain cycle structure
of the de Bruijn graph as the behavior is dominated by
long cycles, which tend to be more regular with respect
to our embedding.

Conversely, for values of k in the same order of mag-
nitude as w, the precise cycle structure of the de Bruijn
graph matters, and designing small universal sets or
low density schemes requires taking this cycle struc-
ture into account.

5 Conclusion

In this study, through the asymptotic analysis of mini-
mizers, forward and local schemes, we deepened the
theoretical understanding of these techniques, and
thereby showed that greater improvements than pre-
viously thought are possible. In particular, we com-
pletely characterized the behavior asymptotically in
k and gave an efficient algorithm to create the first
known optimal minimizers schemes. Because the min-
imizers schemes are the weakest type of schemes, this
shows that all schemes are optimal asymptotically in
k. For forward schemes, we gave a refined lower-bound
that applies to all parameters k£ and w.

The asymptotic behavior in w is markedly different
than the asymptotic behavior in k. For large w, the
lower-bound for the minimizers schemes is higher than
for the forward scheme, which is higher than for local
schemes.

The local schemes are not well understood at all.
Although we do have some examples of optimal local
schemes found through ILP or brute force search, there
is currently no algorithm to generate local schemes
with low density. Every algorithm proposed so far is
a forward scheme. A greater understanding of local
schemes holds, at least for large values of w, the great-
est promise to design even better schemes.
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