
Estimating the Accuracy of Multiple Alignments
and its Use in Parameter Advising!

Dan F. DeBlasio1, Travis J. Wheeler2, and John D. Kececioglu1,!!

1 Department of Computer Science, The University of Arizona, USA
2 Janelia Farm Research Campus, Howard Hughes Medical Institute, USA

kece@cs.arizona.edu

Abstract. We develop a novel and general approach to estimating the
accuracy of protein multiple sequence alignments without knowledge of a
reference alignment, and use our approach to address a new problem that
we call parameter advising. For protein alignments, we consider twelve
independent features that contribute to a quality alignment. An accuracy
estimator is learned that is a polynomial function of these features; its
coefficients are determined by minimizing its error with respect to true
accuracy using mathematical optimization. We evaluate this approach
by applying it to the task of parameter advising: the problem of choos-
ing alignment scoring parameters from a collection of parameter val-
ues to maximize the accuracy of a computed alignment. Our estimator,
which we call Facet (for “feature-based accuracy estimator”), yields a
parameter advisor that on the hardest benchmarks provides more than
a 20% improvement in accuracy over the best default parameter choice,
and outperforms the best prior approaches to selecting good alignments
for parameter advising.

1 Introduction

Estimating the accuracy of a computed multiple sequence alignment without
knowing the correct alignment is an important problem. A good accuracy esti-
mator has broad utility, from building a meta-aligner that selects the best output
of a collection of aligners, to boosting the accuracy of a single aligner by choosing
the best values for alignment parameters. The accuracy of a computed alignment
is typically determined with respect to a reference alignment, by measuring the
fraction of substitutions in the core columns of the reference alignment that are
present in the computed alignment. We estimate accuracy without knowing the
reference by learning a function that combines several easily-computable features
of an alignment into a single value.

In the literature, several approaches have been presented for assessing the
quality of a computed alignment without knowing a reference alignment for its
sequences. These approaches follow two general strategies for estimating the
accuracy of a computed alignment in recovering a correct alignment (where cor-
rectness is either with respect to the unknown structural alignment, as in our

! Research supported by US NSF Grant IIS-1050293 and DGE-0654435.
!! Corresponding author.

B. Chor (Ed.): RECOMB 2012, LNBI 7262, pp. 45–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

46 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

present study, or the unknown evolutionary alignment, as in simulation studies).
One strategy is to develop a new scoring function on alignments that ideally is
correlated with accuracy. These scoring functions combine local features of an
alignment into a score, where the features typically include a measure of the
conservation of amino acids in alignment columns. Scoring-function-based ap-
proaches include AL2CO by Pei and Grishin [9], NorMD by Thompson et al. [11],
and PredSP by Ahola et al. [1]. The other general strategy is to (a) examine
a collection of alternate alignments of the same sequences, where the collection
can be generated by changing the method used for computing the alignment or
changing the input to a method, and (b) measure the support for the computed
alignment among the collection [8,7,10,6]. In this strategy the support for the
computed alignment, which essentially measures the stability of the alignment
to changes in the method or input, serves as a proxy for accuracy. Support-
based approaches include MOS by Lassmann and Sonnhammer [8], HoT by Landan
and Graur [7], GUIDANCE by Penn et al. [10], and PSAR by Kim and Ma [6]. In
our experiments, among scoring-function-based approaches, we compare just to
NorMD and PredSP, since AL2CO is known [8] to be dominated by NorMD. Among
support-based approaches, we compare just to MOS and HoT, as GUIDANCE re-
quires alignments of at least four sequences (ruling out the many three-sequence
protein reference aligments in suites such as BENCH [3]), while PSAR is not yet
implemented for protein alignments.

The new approach we develop for accuracy estimation significantly improves
on prior approaches, as we demonstrate through its performance on parameter
advising. Compared to prior scoring-function-based approaches, we (a) introduce
several novel feature functions that measure non-local properties of an align-
ment that show stronger correlation with accuracy, (b) consider larger classes of
estimators beyond linear combinations of features, and (c) develop new regres-
sion approaches for learning a monotonic estimator from examples. Compared
to support-based approaches, our estimator does not degrade on difficult align-
ment instances, where for parameter advising, good accuracy estimation is most
needed. As shown in our advising experiments, support-based approaches lose
the ability to detect accurate alignments of hard-to-align sequences, since most
alternate alignments are poor and lend little support to the best alignment.

2 Accuracy Estimators

Without knowing a reference alignment that establishes the ground truth against
which the true accuracy of an alignment is measured, we are left with only be-
ing able to estimate the accuracy of an alignment. Our approach to obtaining
an estimator for alignment accuracy is to (a) identify multiple features of an
alignment that tend to be correlated with accuracy, and (b) combine these fea-
tures into a single accuracy estimate. Each feature, as well as the final accuracy
estimator, is a real-valued function of an alignment.

The simplest estimator is a linear combination of feature functions, where
features are weighted by coefficients. These coefficients can be learned by training
the estimator on example alignments whose true accuracy is known. This training

Estimating Multiple Alignment Accuracy 47

process will result in a fixed coefficient or weight for each feature. Alignment
accuracy is usually represented by a value in the range [0, 1], with 1 corresponding
to perfect accuracy. Consequently the value of the estimator on an alignment
should be bounded, no matter how long the alignment or how many sequences
it aligns. For boundedness to hold when using fixed feature weights, the feature
functions themselves must also be bounded. Hence we assume that the feature
functions also have the range [0, 1]. We can then guarantee that the estimator
has range [0, 1] by ensuring that coefficients found by the training process yield
a convex combination of features.

In general we consider estimators that are polynomial functions of alignment
features. More precisely, suppose the features that we consider for alignments A
are measured by the k feature functions fi(A) for 1 ≤ i ≤ k. Then our accu-
racy estimator E(A) is a polynomial in the k variables fi(A). For example, for a
degree-2 polynomial, E(A) := a0+

∑
1≤i≤k ai fi(A)+

∑
1≤i,j≤k aij fi(A) fj(A).

Learning an estimator from example alignments, as discussed in Section 3, cor-
responds to determining the coefficients for its terms. We can efficiently learn
optimal values for the coefficients, that minimize the error between the esti-
mate E(A) and the actual accuracy of alignment A on a set of training ex-
amples, even for estimators that are polynomials of arbitrary degree d. The
key is that such an estimator can always be reduced to the linear case by a
change of feature functions. For each term in the degree-d estimator, where
the term is specified by the powers pi of the fi, define a new feature function
gj(A) :=

∏
1≤i≤k

(
fi(A)

)pi . Then the original degree-d estimator is equivalent
to the linear estimator E(A) = c0 +

∑
1≤j<t cj gj(A), where t is the number

of terms in the original polynomial. For a degree-d estimator with k original
feature functions, the number of coefficients t in the linearized estimator is at
least P(d, k), the number of integer partitions of d with k parts. This number of
coefficients grows very fast with d, so overfitting quickly becomes an issue. (Even
a cubic estimator on 10 features already has 286 coefficients.) In our experiments,
we focus on linear and quadratic estimators.

3 Learning the Estimator from Examples

To learn an accuracy estimator, we collect a training set of alignments whose true
accuracy is known, and find coefficients for the estimator that give the best fit
to true accuracy. We form the training set for our experiments by (1) collecting
reference alignments from standard suites of benchmark protein multiple align-
ments; (2) for each such reference alignment, generating alternate alignments of
its sequences by calling a multiple sequence aligner with differing values for the
parameters of its alignment scoring function, in particular by varying its gap
penalties, which can yield markedly different alignments; and (3) labeling each
such alternate alignment by its accuracy with respect to the reference alignment
for its sequences. We are careful to use suites of benchmarks for which the refer-
ence alignments are obtained by structural alignment of the proteins using their
known three-dimensional structures. These alternate alignments together with
their labeled accuracies form the examples in our training set.

48 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

Fitting to Accuracy Values. A natural fitting criterion is to minimize the error
on the example alignments between the estimator and the true accuracy value.
For alignment A in our training set S, let Ec(A) be its estimated accuracy where
vector c = (c0, . . . , ct−1) specifies the values for the coefficients of the estimator
polynomial, and let F (A) be the true accuracy of example A.

Formally, minimizing the weighted error between estimated accuracy and true
accuracy yields estimator E∗ := Ec∗ with coefficient vector c∗ that minimizes∑

A∈S wA

∣∣Ec(A) − F (A)
∣∣p, where power p controls the degree to which large

accuracy errors are penalized. Weights wA correct for sampling bias among the
examples, as explained below.

When p = 2, this corresponds to minimizing the L2 norm between the es-
timator and the true accuracies. The absolute value in the objective function
may be removed, and the formulation becomes a quadratic programming prob-
lem in variables c, which can be efficiently solved. (Note that Ec is linear in c.)
If the feature functions all have range [0, 1], we can ensure that the resulting
estimator E∗ also has range [0, 1] by adding to the quadratic program the linear
inequalities c ≥ 0 and

∑
0≤i<t ci ≤ 1.

When p = 1, the formulation corresponds to minimizing the L1 norm. This
is less sensitive to outliers than the L2 norm, an advantage when the under-
lying features are noisy. Minimizing the L1 norm can be reduced to a linear
programming problem as follows. In addition to variables c, we have a second
vector of variables e with an entry eA for each example A ∈ S to capture the
absolute value in the L1 norm, along with inequalities eA ≥ Ec(A)− F (A) and
eA ≥ F (A) − Ec(A), which are linear in variables c and e. We then minimize the
linear objective function

∑
A∈S wA eA. For n examples, the linear program has

n+ t variables and O(n) inequalities, which is solvable even for very large num-
bers of examples. We can also add inequalities that ensure E∗ has range [0, 1].

The weights wA on examples aid in finding an estimator that is good across
all accuracies. In the suites of protein alignment benchmarks that are commonly
available, a predominance of the benchmarks consist of sequences that are eas-
ily alignable, meaning that standard aligners find high-accuracy alignments for
these benchmarks. (This is mainly a consequence of the fact that proteins for
which reliable structural reference alignments are available tend to be closely
related, and hence easier to align; it does not mean that typical biological inputs
are easy!) In this situation, when training set S is generated as described ear-
lier, most examples have high accuracy, with relatively few at moderate to low
accuracies. Without weights on examples, the resulting estimator E∗ is strongly
biased towards optimizing the fit for high accuracy alignments, at the expense
of a poor fit at lower accuracies. To prevent this, we bin the examples in S by
their true accuracy, where B(A) ⊆ S is the set of alignments falling in the bin for
example A, and then weight the error term for A by wA := 1/

∣∣B(A)
∣∣. (In our ex-

periments, we form 10 bins equally spaced at 10% increments in accuracy.) In the
objective function this weights bins uniformly (rather than weighting examples
uniformly) and weights the error equally across the full range of accuracies.

Estimating Multiple Alignment Accuracy 49

Fitting to Accuracy Differences. Many applications of an accuracy estimator E
will use it to choose from a set of alignments the one that is estimated to be
most accurate. (This occurs, for instance, in parameter advising as discussed in
Section 5.) In such applications, the estimator is effectively ranking alignments,
and all that is needed is for the estimator to be monotonic in true accuracy.
Accordingly, rather than trying to fit the estimator to match accuracy values,
we can instead fit it so that differences in accuracy are reflected by at least as
large differences in the estimator. This fitting to differences is less constraining
than fitting to values, and hence might be better achieved.

More precisely, suppose we have selected a set P ⊆ S2 of ordered pairs of
example alignments, where every pair (A,B) ∈ P satsifies F (A) < F (B). Set P
holds pairs of examples on which accuracy F increases for which we desire similar
behavior from our estimator E. (Later we discuss how we select a small set P of
important pairs.) If estimator E increases at least as much as accuracy F on a
pair in P , this is a success, and if it increases less than F , we consider the amount
it falls short an error, which we try to minimize. Notice this tries to match large
accuracy increases, and penalizes less for not matching small increases.

We formulate fitting to differences as finding the optimal estimator E∗ := Ec∗

given by coefficients c∗ that minimize
∑

(A,B)∈P wAB epAB, where eAB is defined

to be max
{(

F (B)−F (A)
)
−

(
Ec(B)−Ec(A)

)
, 0

}
, and wAB weights the error

term for a pair. When power p is 1 or 2, we can reduce this optimization problem
to a linear or quadratic program as follows. We introduce a vector of variables e
with an entry eAB for each pair (A,B) ∈ P , along with inequalities eAB ≥ 0
and eAB ≥

(
F (B)− F (A)

)
−

(
Ec(B)−Ec(A)

)
, which are linear in variables c

and e. We then minimize the objective function
∑

(A,B)∈P wAB epAB, which is
linear or quadratic in the variables for p = 1 or 2.

For a set P ofm pairs, these programs havem+t variables andm inequalities,
where m = O(n2) in terms of the number of examples n. For the programs to
be manageable for large n, set P must be quite sparse.

We select a sparse set P of pairs as follows. Recall that the training set S of
examples consists of alternate alignments of the sequences in benchmark refer-
ence alignments, where the alternates are generated by aligning the benchmark
under a constant number of different parameter choices. A monotonic estimator,
especially one that is used for parameter advising, should properly rank the set
of alternate alignments for each benchmark. Consequently for each benchmark,
we select all pairs of alternates whose difference in accuracy is at least ε, where ε
is a tunable threshold. For the estimator to generalize outside the training set,
it helps to also properly rank alignments between benchmarks. To include some
pairs between benchmarks, we choose the minimum, maximum, and median ac-
curacy alignments for each benchmark, and form one list L of all these chosen
alignments, ordered by increasing accuracy. Then for each alignment A in L, we
scan L to the right to select the first k pairs (A,B) for which F (B) ≥ F (A)+ i δ
where i = 1, . . . , k, and for which B is from a different benchmark than A.
While the constants ε ≥ 0, δ ≥ 0, and k ≥ 1 control the specific pairs that this
procedure selects for P , it always selects O(n) pairs on the n examples.

50 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

Weighting Pairs for Difference Fitting. When fitting to accuracy differences we
again weight the error terms, which are now associated with pairs, to correct
for sampling bias within P . We want the weighted pairs to treat the entire
accuracy range equally, so the fitted estimator performs well at all accuracies.
As when fitting to accuracy values, we partition the example alignments in S into
bins B1, . . . ,Bk according to their true accuracy. To model equal weighting of
accuracy bins by pairs, we consider a pair (A,B) ∈ P to have half its weight wAB

on the bin containing A, and half on the bin containing B. (So in this model,
a pair (A,B) with both ends A,B in the same bin B, places all its weight wAB

on B.) Then we want to find weights wAB > 0 that, for all bins B, satisfy∑
(A,B)∈P:A∈B

1
2 wAB +

∑
(A,B)∈P:B∈B

1
2 wAB = 1. In other words, the pairs

should weight bins uniformly. We say a collection of weights wAB are balanced
if they satisfy the above property. While balanced weights do not always exist
in general, we can identify an easily-satisfied condition that guarantees they do
exist, and in this case find balanced weights by the following graph algorithm.

Construct an undirected graph G whose vertices are the bins Bi and whose
edges (i, j) go between bins Bi,Bj that have an alignment pair (A,B) in P with
A ∈ Bi and B ∈ Bj. (Notice G has self-loops when pairs have both alignments
in the same bin.) Our algorithm first computes weights ωij on the edges (i, j)
in G, and then assigns weights to pairs (A,B) by setting wAB := 2ωij/cij ,
where bins Bi,Bj contain alignments A,B, and cij counts the number of pairs
in P between bins Bi and Bj . (The factor of 2 is due to a pair only contributing
weight 1

2wAB to a bin.) A consequence is that all pairs (A,B) that go between
the same bins get the same weight wAB.

During the algorithm, an edge (i, j) in G is said to be labeled if its weight ωij
has been determined; otherwise it is unlabeled. We call the degree of a vertex i
the total number of endpoints of edges in G that touch i, where a self-loop
contributes two endpoints to the degree. Initially all edges of G are unlabeled.
The algorithm sorts the vertices of G in order of nonincreasing degree, and
then processes the vertices from highest degree on down. In the general step,
the algorithm processes vertex i as follows. It accumulates w, the sum of the
weights ωij of all labeled edges that touch i; counts u, the number of unlabeled
edges touching i that are not a self-loop; and determines d, the degree of i. To
the unlabeled edges (i, j) touching i, the algorithm assigns weight ωij := 1/d if
the edge is not a self-loop, and weight ωii :=

1
2 (1− w − u

d) otherwise.
This algorithm assigns balanced weights if in graphG, every bin has a self-loop,

as stated in the following theorem. The proof is omitted due to page limits.

Theorem 1 (Finding Balanced Weights). Suppose every bin B has some
pair (A,B) in P with both alignmentsA,B in B. Then the above graph algorithm
finds balanced weights, and runs in O(k +m) time for k bins and m pairs in P .

Notice that we can ensure the condition in Theorem 1 holds if every bin has at
least two example alignments: simply add a pair (A,B) to P where both align-
ments are in the bin, if the procedure for selecting a sparse P did not already.
When the training set S of example alignments is sufficiently large compared to

Estimating Multiple Alignment Accuracy 51

the number of bins (which is within our control), every bin is likely to have at
least two examples. So Theorem 1 essentially guarantees that in practice we can
fit our estimator using balanced weights.

4 Estimator Features

The quality of the estimator that results from our approach ultimately rests on
the quality of the features that we consider. We consider a dozen features of
an alignment, the majority of which are novel. All are efficiently computable,
so the resulting estimator is fast to evaluate. The strongest feature functions
make use of predicted secondary structure (which is not surprising, given that
protein reference alignments are structural alignments). Another aspect of the
best alignment features is that they tend to use nonlocal information. This is in
contrast to standard ways of scoring sequence alignments, such as with amino
acid substitution scores or gap open and extension penalties, which are often a
function of a single alignment column or two adjacent columns. While a good
accuracy estimator would make an ideal scoring function for constructing a se-
quence alignment, computing an optimal alignment under such a nonlocal scor-
ing function seems prohibitive. Nevertheless, given that our estimator can be
efficiently evaluated on any constructed alignment, it is well suited for selecting
a sequence alignment from among several alternate alignments, as we discuss in
Section 5 in the context of parameter advising.

The following are the feature functions we consider for our estimator.

Secondary Structure Blockiness. The reference alignments in the most reliable
suites of protein alignment benchmarks are computed by structural alignment
of the known three-dimensional structures of the proteins. The so-called core
blocks of these reference alignments, which are the columns in the reference to
which an alternate alignment is compared when measuring its true accuracy, are
typically defined as the regions of the structural alignment in which the residues
of the different proteins are all within a small distance threshold of each other in
the superimposed structures. These regions of structural agreement are usually
in the embedded core of the folded proteins, and the secondary structure of the
core usually consists of α-helices and β-strands. (There are three basic types of
secondary structure that a residue can have: α-helix, β-strand, and coil, which
stands for “other.”) As a consequence, in the reference sequence alignment, the
sequences in a core block often share the same secondary structure, and the type
of this structure is usually α-helix or β-strand.

We measure the degree to which a multiple alignment displays this pattern of
structure by a feature we call secondary structure blockiness. Suppose that for
the protein sequences in a multiple alignment we have predicted the secondary
structure of each protein, using a standard prediction tool such as PSIPRED [4].
Then in multiple sequence alignment A and for given integers k, & > 1, define a
secondary structure block B to be (i) a contiguous interval of at least & columns
of A, together with (ii) a subset of at least k sequences in A, such that on

52 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

all columns in this interval, in all sequences in this subset, all the entries in
these columns for these sequences have the same predicted secondary structure
type, and this shared type is all α-helix or all β-strand. We call B an α-block
or a β-block according to the common type of its entries. (Parameter &, which
controls the minimum width of a block, relates to the minimum length of α-
helices and β-strands.) A packing for alignment A is a set P = {B1, . . . ,Bb} of
secondary structure blocks of A, such that the column intervals of the Bi ∈ P
are all disjoint. (In other words, in a packing, each column of A is in at most
one block. The sequence subsets for the blocks can differ arbitrarily.) The value
of a block is the total number of residue pairs (or equivalently, substitutions) in
its columns; the value of a packing is the sum of the values of its blocks. Finally,
the blockiness of an alignment A is the maximum value of any packing for A,
divided by the total number of residue pairs in the columns of A. In other words,
blockiness measures the percentage of substitutions that are in α- or β-blocks.

While at first glance measuring blockiness might seem hard (as most combi-
natorial packing problems are in the worst-case), it can actually be computed in
linear time, as the following theorem states. The key insight is that evaluating
blockiness can be reduced to solving a longest path problem on a directed acyclic
graph of linear size. The proof is omitted due to page limits.

Theorem 2 (Evaluating Blockiness). Given a multiple alignment A of
m protein sequences and n columns, where the sequences are annotated with pre-
dicted secondary structure, the blockiness of A can be computed in O(mn) time.

Other Features. The remaining features are simpler than blockiness.

Secondary Structure Agreement. The secondary structure prediction tool
PSIPRED [4] outputs confidence values at each residue that are intended to re-
flect the probability that the residue has each of the three secondary structure
types. Denote these three confidences for a residue i, normalized so they add
up to 1, by pα(i), pβ(i), and pγ(i). Then we can estimate the probability that
two residues i, j in a column have the same secondary structure type that is
not coil by P (i, j) := pα(i) pα(j) + pβ(i) pβ(j). To measure how strongly the
secondary structure locally agrees around two residue positions, we compute a
weighted average of P in a window of width 2& + 1 centered at the positions:
Q(i, j) :=

∑
−%≤k≤% wk P (i+k, j+k), where the weights wk form a discrete dis-

tribution that peaks at k = 0 (centered on i and j) and is symmetric. The value
of the secondary structure agreement feature is then the average of Q(i, j) over
all residue pairs i, j in all columns.

Gap Features. A gap in a pairwise alignment is a maximal run of either insertions
or deletions. We consider the following four features on gaps. In Gap Coil Den-
sity, for every pair of sequences, we measure the fraction of residues involved in
gaps in the pairwise alignment induced by the sequence pair that are predicted
by PSIPRED to be of secondary structure type coil, and average this measure
over all induced pairwise alignments. Gap Extension Density counts the number

Estimating Multiple Alignment Accuracy 53

of null characters in the alignment (the dashes that denote gaps), normalized
by the total number of alignment entries. Gap Open Density counts the num-
ber of runs of null characters in the rows of the alignment, normalized by the
total length of all such runs. For Gap Compatibility, as in cladistics, we encode
the gapping pattern in the columns of an alignment by a binary state: residue,
or null character. For an alignment in this encoding we then collapse together
adjacent columns that have the same gapping pattern. We evaluate the reduced
set of columns for compatibility by checking whether a perfect phylogeny exists
on them, using the so-called four-gametes test on pairs of columns. The feature
measures the fraction of pairs of reduced columns that pass the test.

Conservation Features. We consider the following six features that measure con-
servation within alignment columns. In Substitution Compatibility, similar to
Gap Compatibility, we encode the substitution pattern in the columns of an
alignment by a binary state: using a reduced amino acid alphabet of equiva-
lency classes, residues in the most prevalent equivalency class in the column
are mapped to 1 and all others to 0. The feature measures the fraction of en-
coded column pairs that pass the four-gametes test. We considered the standard
reduced alphabets with 6, 10, 15, and 20 equivalency classes, and used the 10-
class alphabet, which gave the strongest correlation with accuracy. Amino Acid
Identity is usually called percent-identity. In each induced pairwise alignment,
we measure the fraction of substitutions in which the residues have the same
amino acid equivalency class. The feature averages this over all induced pairwise
alignments. Secondary Structure Identity is like amino acid identity, except that
instead of the protein’s amino acid sequence, we use the secondary structure
sequence predicted for the protein by PSIPRED [4] (a string over a 3-letter alpha-
bet). Average Substitution Score computes the average score of all substitutions
in the alignment using a BLOSUM62 substitution-scoring matrix that has been
shifted and scaled so the amino acid similarity scores are in the range [0, 1].
Core Column Density predicts core columns as those that do not contain null
characters and whose fraction of pairs of residues that have the same amino acid
equivalency class is above a threshold. The feature then normalizes the count
of predicted core columns by the total number of columns in the alignment. In-
formation Content measures the average entropy of the alignment, by summing
over the columns the log of the ratio of the abundance of a specific amino acid
in the column over the background distribution for that amino acid, normalized
by the number of columns in the alignment.

5 Application to Parameter Advising

In characterizing six stages in constructing a multiple sequence alignment,
Wheeler and Kececioglu [12] gave as the first stage choosing the parameter val-
ues for the alignment scoring function. While many alignment tools allow the
user to specify scoring function parameter values, such as affine gap penalties or
substitution scoring matrices, typically only the default parameter values that
the aligner provides are used. This default parameter choice is often tuned to

54 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

optimize the average accuracy of the aligner over a collection of alignment bench-
marks. While the default parameter values might be the single choice that works
best on average on the benchmarks, for specific input sequences there may be a
different choice on which the aligner outputs a much more accurate alignment.

This leads to the task of parameter advising: given particular sequences to
align, and a set of possible parameter choices, recommend a parameter choice to
the aligner that yields the most accurate alignment of those sequences. Param-
eter advising has three components: the set S of input sequences, the set P of
parameter choices, and the aligner A. (Here a parameter choice p ∈ P is a vec-
tor p = (p1, . . . , pk) that specifies values for all free parameters in the alignment
scoring function.) Given sequences S and parameter choice p ∈ P , we denote the
alignment output by the aligner as Ap(S).

Wheeler and Kececioglu [12] call a procedure that takes the set of input se-
quences S and the set of parameter choices P , and outputs a parameter recom-
mendation p ∈ P , an advisor. A perfect advisor, that always recommends the
choice p∗ ∈ P that yields the highest accuracy alignment Ap∗(S), is called an
oracle. In practice, constructing an oracle is impossible, since for any real set S
of sequences that we want to align, a reference alignment for S is unknown (as
otherwise we would not need to align them), so the true accuracy of any align-
ment of S cannot be determined. The concept of an oracle is useful, however,
for measuring how well an actual advisor performs.

A natural approach for constructing a parameter advisor is to use an accuracy
estimator E as a proxy for true accuracy, and recommend the parameter choice
p̃ := argmaxp∈P E

(
Ap(S)

)
. In its simplest realization, such an advisor will run

the aligner A repeatedly on input S, once for each possible parameter choice p ∈
P , to select the output that has best estimated accuracy. Of course, to yield a
quality advisor, this requires two ingredients: a good estimator E, and a good
set P of parameter choices. The preceding sections have addressed how to design
estimator E; we now turn to how to find a good set P .

Finding an Optimal Parameter Set. Since the above advisor computes as many
alignments as there are parameter choices in P , set P must be small for such an
advisor to be practical. Given a bound on |P |, we would like to find a set P that,
say, maximizes the true accuracy of the aligner A using the advisor’s recommen-
dation from P , averaged over a training collection of benchmarks S. Finding
such an optimal set P is prohibitive, however, because the behavior of the advi-
sor is an indirect function of the entire set P (through the estimator E), which
effectively forces us to enumerate all possible sets P to find an optimal one.

Instead, we can directly find a set P that maximizes the true accuracy of
alignerA using an oracle on P . The true accuracy of alignerA on a given input S,
using an oracle on set P , is simply maxp∈P F

(
Ap(S)

)
, where again F (A) is the

true accuracy of alignment A. We can then find a set P ∗ that maximizes the
average of the above quantity over all inputs S in a collection of benchmarks.
We use this criterion, which seeks to maximize the performance of an oracle on
the parameter set, for our definition of an optimal parameter set P .

Estimating Multiple Alignment Accuracy 55

We formulate this model as follows. Let U be the universe of parameter choices
from which we want to find a parameter set P ⊆ U . For a parameter choice p ∈
U and sequences S, denote the true accuracy of the aligner using p on S as
ap,S := F

(
Ap(S)

)
. Given a bound k on the size of P , we want to find the

optimal set P ∗ := argmaxP ⊆U

∑
S argmaxp∈P ap,S , where the summation is

over all benchmarks S in a training set. (This is equivalent to maximizing the
average true accuracy of the aligner over the training set using the oracle on P .)
We call this problem, Optimal Parameter Set.

As might be expected, Optimal Parameter Set is NP-complete: it is equivalent
to a classic problem from the field of operations research called Facility Location.
Both problems can be tackled, however, by expressing them as an integer linear
program. Page limits prevent us from giving the formulation of the integer linear
program, but for a universe U of t parameter choices and a training set of
n benchmarks, it has O(tn) variables and O(tn) constraints. For a large universe
and a large training set, the resulting integer program can get very big.

In our computational experiments, we tackle the integer linear program as
follows. First we solve the relaxed linear program, where the integer variables
are allowed to take on real values. We then examine the optimal solution to this
linear program, and for all the parameter choices p not chosen in the solution
to the relaxed linear program, we throw out p from U , forming a new, reduced
universe of parameter choices Ũ . Finally we solve the full integer linear program
on the reduced universe Ũ . This approach, which we call solving the reduced
integer program, is essentially a very accurate rounding heuristic for tackling
the integer linear program. In our experiments, it is remarkably fast, allowing
us to find high-quality solutions for very large instances with a universe of over
500 parameter choices and a training set of over 800 benchmarks.

6 Experimental Results

We evaluate our approach for deriving an accuracy estimator, and the quality of
the resulting parameter advisor, through experiments on a collection of bench-
mark protein multiple sequence alignments. In these experiments, we compare
parameter advisors that use our estimator and four estimators from the litera-
ture: NorMD [11], MOS [8], HoT [7], and PredSP [1]. (In terms of our earlier catego-
rization of estimators, NorMD and PredSP are scoring-function-based, while MOS
and HoT are support-based.) We refer to our estimator by the acronym Facet
(short for “Feature-based accuracy estimator”).

In our experiments, for the collection of alignment benchmarks we used the
BENCH suite of Edgar [3], which consists of 759 benchmarks, supplemented by a
selection of 102 benchmarks from the PALI suite of Balaji et al. [2]. Both BENCH
and PALI consist of protein multiple sequence alignments mainly induced by
structural alignment of the known three-dimensional structures of the proteins.
The entire benchmark collection consists of 861 reference alignments.

For each reference alignment in this benchmark collection, we generated al-
ternate multiple alignments of the sequences in the reference using the multiple

56 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

alignment tool Opal [12,13] with varying parameter choices. Each parameter
choice is a vector of four integer values for scoring an alignment using affine
gap penalties: a gap-open and gap-extension penalty for internal gaps, and the
same for external gaps. These were selected from a universe U of 556 parameter
choices [12]. (Set U was formed by finding a single optimal parameter choice
through inverse parametric alignment [5], rounding this real-valued parameter
choice to integers, and enumerating the Cartesian product of integer choices in
the neighborhood of this central choice.) Opal also provides a default parameter
choice from U that yields the highest average accuracy across the benchmarks.

For the experiments, we measure the difficulty of a benchmark S by the true
accuracy of the alignment computed by Opal on sequences S using its default
parameter choice, where the computed alignment is compared to the bench-
mark’s reference alignment on its core columns. Using this measure, we binned
the 861 benchmarks by difficulty, where we divided up the full range [0, 1] of
accuracies into 10 bins with difficulties [(i−1)/10, i/10] for i = 1, . . . , 10. As
is common in benchmark suites, easy benchmarks are highly over-represented
compared to hard benchmarks; the number of benchmarks falling in bins [0, .1]
through [.9, 1] are respectively: 13, 9, 24, 40, 30, 44, 66, 72, 129, 434. To correct for
this bias in oversampling of easy benchmarks, our approaches for learning an
estimator nonuniformly weight the training examples, as described earlier.

To generate training and test sets for our parameter advising experiments on
a given set P ⊆ U of parameter choices, we used three-fold cross validation. For
each bin, we evenly and randomly partitioned the benchmarks in the bin into
three groups; we then formed three different splits of the entire set of benchmarks
into a training class and a test class, where each split put one group in a bin into
the test class and the other two groups in the bin into the training class; finally,
for each split we generated a test set and a training set of example alignments by
generating |P | alignments from each benchmark S in a training or test class by
running Opal on S using each parameter choice in P . An estimator learned on
the examples in the training set was evaluated on the examples in the associated
test set. The results that we report are averages over three runs, where each run
is on one of these training and test set pairs. For a set P of 10 parameters, each
run has over 5, 700 training examples and 2, 800 test examples.

Selecting Features. Of the features listed in Section 4, not all are equally infor-
mative, and some can weaken an estimator. We selected subsets of features for
use in accuracy estimators as follows. For each of the twelve features, we first
learned an estimator that used that feature alone, and ranked all twelve of these
single-feature estimators according to the average accuracy across the difficulty
bins of the resulting parameter advisor using that estimator. Then a greedy
procedure was used to find a subset of the features, considering them in this
order, whose fitted estimator gave an advisor with the highest average accuracy.
This procedure was separately run to find good feature subsets for the optimal
parameter sets on 5, 10, and 15 parameters. To find a good overall feature set
that works well for differing numbers of parameters, we examined all subsets of

Estimating Multiple Alignment Accuracy 57

features considered during runs of the greedy procedure, and chose the subset
that had the highest accuracy averaged across the 5-, 10-, and 15-parameter sets.

The best overall feature set found by this process is a 5-feature subset con-
sisting of the following features: secondary structure blockiness (BL), secondary
structure agreement (SA), secondary structure identity (SI), substitution com-
patibility (SP), and average substitution score (AS). The corresponding fitted es-
timator is (.174) SA + (.172) BL + (.168) SI + (.167) SP + (.152) AS + (.167).
This 5-feature estimator, when advising using the optimal 10-parameter set,
has average accuracy 57.9%. By comparison, the 12-feature estimator has corre-
sponding average accuracy 56.3%. Clearly feature selection helps.

To give a sense of the impact of alternate fitting approaches and higher-degree
polynomials, for this 5-feature set, the average accuracy on the 10-parameter set
of the linear estimator with difference fitting is 57.9%, and with value fitting
is 55.9%; the quadratic estimator with difference fitting is also 57.9%, and with
value fitting is 55.8%. In general, we experience only marginal improvement with
a quadratic estimator over a linear estimator, even using regularization, though
difference fitting does provide a significant improvement over value fitting.

Comparing Estimators to True Accuracy. To examine the fit of an estimator
to true accuracy, the scatter plots in Fig. 1 show the value of the Facet, MOS,
and PredSP estimators on all example alignments in the 15-parameter test set.

The ideal estimator would be monotonic increasing in true accuracy. Com-
paring the scatter plots, MOS has the highest slope and spread, PredSP has the
lowest slope and spread, while Facet has intermediate slope and spread. This
better compromise between slope and spread may be what leads to improved
performance for Facet.

Performance on Parameter Advising. To evaluate these methods for parameter
advising, we found parameter sets P using our approach that solves the reduced
integer linear program, for |P | = 1, . . . , 15. We show results for the resulting
parameter advisors that use Facet, MOS, PredSP, HoT, and NorMD. Each advisor
is used within Opal to compute an alignment. Advisors are compared by the
resulting true accuracy of Opal, first averaged within each bin and then aver-
aged across all bins. We also do the same comparison looking at the rank of
the alignment chosen by the advisor, where the alignments generated by the
|P | parameter choices are ordered by their true accuracy.

Figure 2 shows the performance of the four best resulting advising methods
on the optimal set P of 10 parameters, with respect to accuracy of the alternate
alignment chosen by the advisor, averaged over the benchmarks in each difficulty
bin. The oracle curve shows what would be achieved by a perfect advisor. The
figure also shows the expected performance of a purely random advisor, which
simply picks a parameter from P uniformly at random. In the figure, note that
the advisor that uses Facet is the only one that always performs at or above
random in accuracy. The Facet advisor is also strictly better than every other
advisor in accuracy on all but one bin, at difficulty [.6, .7]. As the figure shows,
Facet gives the most help in the hardest bins.

58 D.F. DeBlasio, T.J. Wheeler, and J.D. Kececioglu

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True Accuracy

F
a

c
e

t
v

a
lu

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True Accuracy
M

O
S

 v
a

lu
e

0 0.2 0.4 0.6 0.8 1
0

0.5

0.4

0.6

0.8

1

True Accuracy

P
re

d
S

P
 v

a
lu

e

Fig. 1. Correlation of estimators with accuracy. Each scatter plot shows the value of
an estimator versus true accuracy for all alignments in the 15-parameter test set.

Fig. 2. Advising accuracy across benchmark bins. Each bar shows an estimator’s per-
formance in advising, averaged over benchmarks in the bin, for the 10-parameter set.

Fig. 3. Advising accuracy and rank for varying numbers of parameters. At each number
of parameters, the curves show accuracy or rank averaged over all benchmark bins.

Estimating Multiple Alignment Accuracy 59

Figure 3 shows the advising performance of the estimators, uniformly averaged
across all bins, as a function of the number of parameter choices k = |P | for
k = 1, . . . , 15. Notice that with respect to accuracy, the performance of the MOS,
PredSP, HoT, and NorMD advisors tends to decline as the number of parameter
choices increases (and for some is not far from random). The Facet advisor
generally improves with more parameters, though beyond 10 parameters the
improvement is negligible. We remark that the performance of the oracle, if its
curve is continued indefinitely to the right, reaches a limiting accuracy of 75.3%.

7 Conclusion

We have presented an efficiently-computable estimator for the accuracy of pro-
tein multiple alignments. The estimator is a polynomial function of alignment
features whose coefficients are learned from example alignments using linear and
quadratic programming. We evaluated our estimator in the context of parameter
advising, and show it consistently outperforms other approaches to estimating
accuracy when used for advising. Compared to using the best default parameter
choice, the resulting parameter advisor using a set of 10 parameters provides
a 20% improvement in multiple alignment accuracy on the hardest benchmarks.

References

1. Ahola, V., Aittokallio, T., Vihinen, M., Uusipaikka, E.: Model-based prediction of
sequence alignment quality. Bioinformatics 24(19), 2165–2171 (2008)

2. Balaji, S., Sujatha, S., Kumar, S.S.C., Srinivasan, N.: PALI: a database of align-
ments and phylogeny of homologous protein structures. NAR 29(1), 61–65 (2001)

3. Edgar, R.C.: http://www.drive5.com/bench (2009)
4. Jones, D.T.: Protein secondary structure prediction based on position-specific scor-

ing matrices. Journal of Molecular Biology 292, 195–202 (1999)
5. Kim, E., Kececioglu, J.: Learning scoring schemes for sequence alignment from

partial examples. IEEE/ACM Trans. Comp. Biol. Bioinf. 5(4), 546–556 (2008)
6. Kim, J., Ma, J.: PSAR: measuring multiple sequence alignment reliability by prob-

abilistic sampling. Nucleic Acids Research 39(15), 6359–6368 (2011)
7. Landan, G., Graur, D.: Heads or tails: a simple reliability check for multiple se-

quence alignments. Molecular Biology and Evolution 24(6), 1380–1383 (2007)
8. Lassmann, T., Sonnhammer, E.L.L.: Automatic assessment of alignment quality.

Nucleic Acids Research 33(22), 7120–7128 (2005)
9. Pei, J., Grishin, N.V.: AL2CO: calculation of positional conservation in a protein

sequence alignment. Bioinformatics 17(8), 700–712 (2001)
10. Penn, O., Privman, E., Landan, G., Graur, D., Pupko, T.: An alignment confidence

score capturing robustness to guide tree uncertainty. MBE 27(8), 1759–1767 (2010)
11. Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: Towards a reliable

objective function for multiple sequence alignments. JMB 314, 937–951 (2001)
12. Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning alignments. Bioin-

formatics 23, i559–i568 (2007); Proceedings of the 15th ISMB
13. Wheeler, T.J., Kececioglu, J.D.: Opal: software for aligning multiple biological

sequences. Version 2.1.0 (January 2012), http://opal.cs.arizona.edu

http://opal.cs.arizona.edu

	Estimating the Accuracy of Multiple Alignments and its Use in Parameter Advising
	Introduction
	Accuracy Estimators
	Learning the Estimator from Examples
	Estimator Features
	Application to Parameter Advising
	Experimental Results
	Conclusion

