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Abstract

While mutation rates can vary markedly over the residues of a protein, multiple se-

quence alignment tools typically use the same values for their scoring-function param-

eters across a protein’s entire length. We present a new approach, called adaptive local

realignment, that in contrast automatically adapts to the diversity of mutation rates

along protein sequences. This builds upon a recent technique known as parameter

advising, that finds global parameter settings for an aligner, to now adaptively find

local settings. Our approach in essence identifies local regions with low estimated ac-

curacy, constructs a set of candidate realignments using a carefully-chosen collection

of parameter settings, and replaces the region if a realignment has higher estimated

accuracy. This new method of local parameter advising, when combined with prior

methods for global advising, boosts alignment accuracy as much as 26% over the best

default setting on hard-to-align protein benchmarks, and by 6.4% over global advis-

ing alone. Adaptive local realignment, implemented within the Opal aligner using the

Facet accuracy estimator, is available at facet.cs.arizona.edu.
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1 Introduction

Ever since the 1960s, it has been known that proteins can have distinct mutation rates at

different locations along the molecule (Fitch and Margoliash, 1967). The amino acids at some

positions in a protein may stay unmutated for long periods of time, while other regions change

a great deal (sometimes referred to as “hypermutable regions”). This has led to methods

in phylogeny construction that take variable mutation rates into account when building

trees from sequences (Yang, 1993). In multiple sequence alignment, however, variation in

mutation rates across sequences to our knowledge has yet to be successfully exploited to

improve alignment accuracy. Multiple sequence alignments are typically computed using a

single setting of values for the parameters of the alignment scoring function. This single

parameter setting affects how residues across a protein are aligned, and implicitly assumes

uniform mutation rates. In contrast, the approach of this paper identifies alignment regions

that may be misaligned under a single parameter setting, and finds alternate settings that

may more closely match the local mutation rate of the sequences.

We present a method that takes a given alignment and attempts to improve its overall

accuracy by replacing sections of it with better subalignments, as demonstrated in Figure 1.

The top alignment of the figure was computed using a single parameter setting: the optimal

default setting of the Opal aligner (Wheeler and Kececioglu, 2007). The bottom alignment is

obtained by our new method, taking the top alignment, automatically identifing the sections
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Figure 1: Effect of adaptive local realignment. Two alignments of the same region of bench-

mark BB11007 from the BAliBASE suite, where the amino acids highlighted in red uppercase

are from the so-called core columns of the reference alignment, which should be aligned in a

correct alignment. (a) The alignment computed by Opal using its optimal default parameter

setting (VTML200, 45, 11, 42, 40) across the sequences, with an accuracy of 89.6%. The regions

of the alignment in gray boxes are automatically selected for realignment. (b) The outcome

of adaptive local realignment, with an improved accuracy of 99.6%, that uses different param-

eters settings in each region. The realignments of the three regions use alternate parameter

settings (BLOSUM62, 45, 2, 45, 42), (BLOSUM62, 95, 38, 40, 40), and (VTML200, 45, 18, 45, 45), re-

spectively.
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in gray boxes, and realigning them using alternate parameter settings, as described later in

Section 3. This increases the overall alignment accuracy by 10%, as most of the misaligned

core blocks (highlighted in red uppercase) are now corrected.

Related work

Methods that partition a set of sequences to align or realign them can be grouped in two

categories, based on the orientation of their partition. Vertical realigners cut the input

sequences into substrings, and once these shorter substrings are realigned, they stitch their

alignments together. Horizontal realigners split an alignment into groups of whole sequences,

which are then merged together by realigning between groups, possibly using the induced

subalignment of each group. Realignment is occasionally called alignment polishing.

Crumble and Prune (Roskin et al., 2011) are a pair of algorithms for performing both

vertical (Crumble) and horizontal (Prune) splits on an input set of sequences. During the

Crumble stage, a set of constraints is found that anchor the input sequences together, and

the substrings or blocks between these anchor points are aligned. Once the disjoint blocks of

the sequences are aligned, they are then fused by aligning their overlapping anchor regions.

During the Prune stage, smaller groups of sequences are aligned that correspond to subtrees

of the progressive aligner’s guide tree. The subset of sequences in a subtree is then replaced by

their alignment’s consensus sequence in the remaining steps of progressive alignment. The

original subalignments of the groups are finally reinserted to form the output alignment.

Replacing a group of sequences by their consensus sequence during alignment reduces the

number of sequences that are aligned at any one time. The objective, however, for splitting
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sequences both vertically and horizontally within Crumble and Prune is not to improve

accuracy, but to reduce running time and memory consumption, in order to make aligning

a large number of long sequences feasible.

An early example of horizontal realignment is ReAligner (Anson and Myers, 1997) which

improves DNA sequence assembly by removing and then realigning sequencing reads. If a

read is initially misaligned in the assembly it may be corrected when realigned. This process

is repeated over all reads to continually refine the assembly.

Gotoh (1993) presented several horizontal methods for heuristically aligning two multiple

sequence alignments, which he called “group-to-group” alignment. This can be used for

alignment construction in a progressive aligner, proceeding bottom-up over the guide tree

and applying group-to-group alignment at each node, or for polishing an existing alignment

by assigning sequences to two groups and realigning between the groups.

The standard alignment tools MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 2005), and

ProbCons (Do et al., 2005) also include a polishing step that performs horizontal realignment

using ideas similar to Gotoh.

AlignAlign (Kececioglu and Starrett, 2004) is unique as a horizontal method in that

it implements an exact algorithm for optimally aligning two multiple sequence alignments

under the sum-of-pairs scoring function with affine gap costs. This optimal group-to-group

alignment algorithm, used for both alignment construction and alignment polishing, forms

the basis of the Opal aligner (Wheeler and Kececioglu, 2007).

While realignment attempts to correct errors in existing alignments that were made dur-

ing the alignment process, several tools attempt to avoid making these errors in the first

place by adjusting parameter values along the sequences during alignment construction. For
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example, PRANK (Löytynoja and Goldman, 2008) uses a multi-level HMM that effectively

chooses the alignment scoring function at each position. T-Coffee (Notredame et al., 2000)

and M-Coffee (Wallace et al., 2006) use consistency between pairwise alignments to create

position-specific substitution scores. M-Coffee extracts these pairwise alignments from a set

of multiple sequence alignments, while T-Coffee generates optimal pairwise alignments. In

fact, even the early tool ClustalW (Thompson et al., 1994) adjusted positional gap-penalties

based on pairwise sequence characteristics. Nevertheless, these tools which adjust positional

alignment scores all attain lower accuracies on protein benchmarks than the aligners which

make no positional adjustments that we compare against in our later computational experi-

ments.

Adaptive local realignment, in contrast, is a vertical approach that aims to improve

alignment accuracy, and a meta-method that can be applied to any aligner with tunable

parameters. To our knowledge, this is the first realignment approach that automatically

adapts to varying mutation rates along a protein and successfully achieves a demonstrable

improvement in alignment accuracy.

Plan of the paper

The next section provides the necessary background on parameter advising, which is basic

to our adaptive local realignment technique. A parameter advisor selects a parameter set-

ting for an aligner from a small set of choices drawn from a larger universe of all possible

settings, using an alignment accuracy estimator to select its choice. Section 3 then describes

our adaptive local realignment method, which can be viewed as a form of local parameter
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advising, and discusses how it interacts with global parameter advising. Section 4 experi-

mentally evaluates our approach, and compares it with prior methods for advising. Finally,

Section 5 gives conclusions and offers directions for further research.

2 Background on parameter advising

To make the paper self-contained, we briefly review our prior work on parameter advising.

We first review the concept of a parameter advisor, which requires an estimator of alignment

accuracy and a set of parameter choices for the advisor, and then summarize our prior

techniques for learning both an estimator and an advisor set. An extensive discussion of

parameter advising for multiple sequence alignment is in DeBlasio and Kececioglu (2017c).

We emphasize that while this section describes how to find an accuracy estimator and

advisor set based on training examples, in practice a user of parameter advising will simply

apply an advisor with a precomputed accuracy estimator and advisor set, and will not invoke

the training procedures described here.

2.1 Global parameter advising

The goal of parameter advising is to find the parameter setting for an aligner that yields

the most accurate alignment of a given set of input sequences. The accuracy of a computed

alignment is measured with respect to the “correct” alignment of the sequences (which often

is not known). For special benchmark sets of protein sequences, the gold-standard align-

ment of the proteins, called their reference alignment, is usually obtained through structural

alignment by finding the best superposition of the known three-dimensional structures of
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the proteins. Columns of the reference alignment that contain a residue from every protein

in the set (where a residue is the amino acid at a particular position in a protein), and

for which the residues in the column are all mutually close in space in the superposition of

the structures, are called core columns. Runs of consecutive core columns are called core

blocks, which represent the regions of the structural alignment with the highest confidence of

being correct. Given such a reference alignment with identified core blocks, the accuracy of

an alternate computed alignment is the fraction of the pairs of residues aligned in the core

blocks of the reference alignment that are also aligned in the computed alignment. (Note

that while a computed alignment of 100% accuracy must completely agree with the reference

on its core blocks, it may disagree elsewhere.) The best computed alignment is one of highest

accuracy, and the task of a parameter advisor is to find a setting of the tunable parameters

of an aligner that yields an accurate output alignment. This setting can be highly input

dependent, as the best choice of parameter values for an aligner can vary for different sets

of input sequences.

When aligning sequences in practice, a reference alignment is almost never known, in

which case the true accuracy of a computed alignment cannot be measured. Instead a pa-

rameter advisor relies on an accuracy estimator E that for an alignment A, gives a value E(A)

in the range [0, 1] that estimates the true accuracy of alignment A. An estimator should be

efficiently computable and positively correlated with true accuracy.

To choose a parameter setting, an advisor takes a set of choices P , where each parameter

choice p ∈ P is a vector that assigns values to all the tunable parameters of an aligner, and

picks the choice that yields a computed alignment of highest estimated accuracy.

Formally, given an accuracy estimator E and a set P of parameter choices, a parameter
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Parameter Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd 
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne 
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------ 
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

   alignment    alignment

accuracy 
estimate

max
Accuracy 
Estimator

unaligned 
sequences

   (γE,γI,λE,λI,σ)

parameter
choices

Aligner

aligned 
sequences

{

alternate 
alignments

labelled 
alternate 

alignments

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd 
MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne 
mtkWNYGVFFLYDVVAFsehhidksyn 
mnkWNYGVFFVYDVINIddhylvkkds

Figure 2: The parameter advising process. For an input set of sequences, a parameter advisor

first invokes the aligner for each assignment of parameter values in a collection of parameter

choices. Each parameter choice when used with the aligner produces an alternate alignment

of the sequences. An accuracy estimator is then used to label each of the alternate alignments

with an accuracy estimate. The advisor then returns the alignment with the highest accuracy

estimate.

9



advisor tries each parameter choice p ∈ P , invokes an aligner to compute an alignment Ap

using choice p, and then selects the parameter choice p∗ that has maximum estimated ac-

curacy: p∗ ∈ argmaxp∈P {E(Ap)}. Figure 2 shows a diagram of parameter advising. Since

the advisor runs the aligner |P | times on a given set of input sequences, a crucial aspect

of parameter advising is finding a small set P for which the true accuracy of the output

alignment Ap∗ is high.

To construct a good advisor, we need to find a good estimator E and a good set P .

The estimator and advisor set are learned on training data consisting of benchmark sets of

protein sequences for which a reference alignment is known. The learning procedure tries to

find an estimator E and set P that maximize the true accuracy of the resulting advisor on

this training data, which we subsequently assess on separate testing data.

Note that the process of advising is fast: for a set P of k parameter choices, advising in-

volves computing k alignments under these choices, which can be done in parallel, evaluating

the estimator on these k alignments, and taking a max. The separate process of training an

advisor, by learning an estimator and advisor set as we review next, is done once, off-line,

before any advising is done.

2.2 Learning an accuracy estimator

Our previous work (DeBlasio et al., 2012; Kececioglu and DeBlasio, 2013) presented an effi-

cient approach for learning an accuracy estimator that is a linear combination of real-valued

alignment feature functions, based on solving a large-scale linear programming problem.

This approach resulted in Facet (short for “feature-based accuracy estimator”; DeBlasio
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and Kececioglu, 2015b), which is currently the most accurate estimator for parameter advis-

ing (Kececioglu and DeBlasio, 2013; DeBlasio and Kececioglu, 2017b).

This approach assumes we have a collection of d real-valued feature functions g1(A), . . . , gd(A)

on alignments A, where these functions gi are positively correlated with true accuracy. The

alignment accuracy estimator E is a linear combination of these functions, E(A) =
∑

1≤i≤d ci gi(A),

where the coefficents ci specify the estimator E. When the feature functions have range [0, 1]

and the coefficients form a convex combination, the resulting estimator E will also have

range [0, 1]. Facet uses a collection of five feature functions, many of which make use of

predicted secondary structure for the protein sequences (Kececioglu and DeBlasio, 2013).

Figure 3 shows the correlation of Facet and TCS (the next best estimator in our tests;

Chang et al., 2014) to true accuracy. To be able to distinguish good from bad alignments an

estimator should have a steep slope and very little spread. While the TCS estimator has high

slope, it has quite a bit of spread. In contrast, the Facet estimator has much less spread

but a less steep slope, and we have found this to be more effective in ranking alignments for

parameter advising.

The features we use in Facet are a mixture of canonical measures of alignment quality,

such as Amino Acid Identity, and novel non-local features of an alignment that correlate

with true accuracy. Many of the most accurate features use predicted protein secondary

structure. For instance, the Secondary Structure Blockiness feature finds an optimal packing

of blocks of aligned amino acids that have the same predicted structure type. The other

feature functions used in the Facet estimator are: Secondary Structure Identity, Secondary

Structure Agreement, Gap Open Density, and Core Column Percentage. A full description

of all features is in Kececioglu and DeBlasio (2013).
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Figure 3: Relationship of estimators to true accuracy. Each point in a scatterplot corresponds

to an alignment whose true accuracy is on the horizontal axis, and whose value under a given

estimator is on the vertical axis. Both scatterplots show the same set of 3,000 alignments

under the accuracy estimators Facet (Kececioglu and DeBlasio, 2013) and TCS (Chang et al.,

2014).

A parameter advisor uses the estimator to effectively rank alignments, so an estimator just

needs to be monotonic in true accuracy. The difference-fitting approach learns the coefficients

of an estimator that is close to monotonic by fitting the estimator to differences in true

accuracy for pairs of training alignments. We can formulate the problem of coefficient finding

using difference-fitting as a linear program; the details of this approach are in Kececioglu

and DeBlasio (2013).

2.3 Learning an advisor set

The size of the parameter set used for advising should be small, since the aligner is run

for each parameter setting. We utilize the concept of an oracle (a perfect advisor that

has access to the true accuracy of an alignment; see Wheeler and Kececioglu, 2007) to
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compute sets that we use in practice. For a given advisor set P , an oracle selects parameter

choice argmaxp∈P{F (Ap)}, where again function F gives the true accuracy of an alignment.

(Equivalently, an oracle is an advisor that uses the perfect estimator F .) An oracle always

picks the parameter choice that yields the highest accuracy alignment.

While an oracle is impossible to construct in practice, it gives a theoretical limit on

the accuracy achievable by advising with a given set. Furthermore, if we find the optimal

advisor set for an oracle for a given cardinality bound k, which we call an oracle set, then

the performance of an oracle on an oracle set gives a theoretical limit on how well advising

can perform for a given bound k on the number of parameter choices. In practice, oracle

sets are used with Facet to construct an advisor.

While finding an optimal oracle set is NP-complete, it can be formulated as an integer

linear programming problem (Kececioglu and DeBlasio, 2013). Learning an optimal oracle set

of cardinality k, for a universe of m parameter choices and a training set of n benchmarks,

involves solving an integer linear program with Θ(mn) variables and Θ(mn) inequalities.

Using the CPLEX (IBM Corporation, 2015) integer linear programming solver, this formulation

permits finding optimal oracle sets in practice even for cardinalities up to k = 25.

It is possible to use a greedy procedure to find advisor sets tuned to a concrete estimator

rather than the oracle (DeBlasio and Kececioglu, 2017b). While using these sets on global

parameter advising increased advising accuracy over oracle sets, this increase did not transfer

to adaptive local realignment. For the results in later sections, we will construct an advisor

using the Facet accuracy estimator learned using difference fitting, along with oracle sets.

Note this is not an oracle advisor, since it uses the Facet estimator.
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3 Adaptive local realignment

To handle heterogeneity in protein sequences that have regions requiring distinct alignment

parameter settings, we introduce a method that we call adaptive local realignment. Adaptive

local realignment uses some of the same basic principles that have been shown to work well

for global parameter advising. We apply the techniques described in the previous section

locally to choose the best alignment parameters over an interval of columns in an alignment.

The adaptive local realignment method has two major steps: (1) discerning regions of

the alignment that are well-aligned, which should be retained; and (2) producing a new

alignment for regions that are poorly aligned, using parameter advising.

3.1 Identifying local realignment regions

When selecting alignment columns that should be retained, we cannot just identify the

correctly-recovered columns in a computed alignment, since in practice we do not have a

known reference alignment against which to compare. We can, however, attempt to identify

these regions using an accuracy estimator E, as defined earlier. To partition the input

alignment, we first evaluate the accuracy estimator within a window of a fixed width that

we slide across the alignment (Figure 4a). The window width is given by a fraction ω < 1 of

the total length ` of the alignment. The value of ω must be carefully chosen, as the accuracy

estimator has features that reflect global properties of an alignment. While a larger sliding

window provides more context at each position, and should yield a better accuracy estimate,

if the window is too large, the granularity may not be sufficiently fine to precisely identify the

transition points between correctly- and incorrectly-aligned columns. Hence we also specify
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Figure 4: The adaptive local realignment process. (a) Estimate the accuracy for sliding

windows across the input alignment using Facet. (b) Calculate a score for each column
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(c) Label columns that are above τS or below τB as seeds or barriers, respectively. (d) Define

realignment regions that will be extracted from the alignment by extending seeds in both

directions until they reach a barrier. (e) Use parameter advising to find a new alignment of

each realignment region. (f) Replace the original realignment region if the new alignment

has higher accuracy estimate.
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upper and lower bounds on the absolute window width to account for very short and very

long alignments.

A score is assigned to each column as a weighted sum of the estimated accuracies of

windows that overlap that column, weighted according to how far away the center column of

the window is (Figure 4b). A geometric distribution with decay rate λ < 1, centered at the

given alignment column, weights the contributions to the column’s score by windows that

overlap it. As λ approaches 1, a column gets equal weight from all overlapping windows; as

λ approaches 0, the score only depends on the window centered at that column.

Using these column scores, we partition the alignment into regions by first labeling the

columns for which there is the most evidence of being correctly—or incorrectly—aligned.

Given a minimum percentage of columns we would like to retain from the input alignment,

ρB (for “barriers”), and a minimum percentage of columns we would like to replace, ρS (for

“seeds”), we determine two threshold values, τB and τS, such that the number of columns

with score greater than τB is at least dρB `e for an alignment of length `, and the number of

columns with score less than τS is at least dρS `e. Then all columns with score at least τB

are labeled barriers—these columns are guaranteed to be retained—and those with column

score at most τS are labeled seeds—these columns will be realigned (Figure 4c). Finally, we

define realignment regions by extending each seed in both directions until a barrier column

(or the first or last column of the alignment) is reached. Note that a realignment region

may contain more than one seed column, but will never include one of the barriers. With

this method we ensure: at least ρB ` columns from the original alignment will be in the final

alignment, there will always be at least one realignment region, and there will never be a

realignment region that covers all columns of the input.
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3.2 Local parameter advising on a region

The realignment regions defined above identify subalignments that may potentially be im-

proved, and we use parameter advising to search for better alignments of these regions that

may replace them in the initial alignment. We extract the subalignment given by the columns

in each realignment region (Figure 4d). Removing the gaps from this subalignment yields

a set of unaligned sequences, which become the input to a slightly modified version of the

parameter advising approach described earlier (Section 2.1, Figure 2), that now takes the

location of the realignment region into account in the alignment scoring scheme (Figure 4e).

The Opal aligner uses different scores for terminal and internal gaps. For adaptive local

realignment, we only apply terminal gap scores when the terminal column in the context

of the subalignment is also a terminal column in the context of the global alignment. As

indicated earlier, an alignment region will not have terminal columns at both ends.

Once we have obtained the new subalignment via parameter advising, the last step is to

replace the corresponding region in the original alignment (Figure 4f) if its new Facet score

is higher than that of the original subalignment for the realignment region.

After all realignment regions have been updated by local advising, we make one final

comparison between the new resulting alignment and the original initial alignment: of these

two global alignments, the one with higher estimated accuracy is returned.

3.3 Iterative local realignment

While adaptive local realignment can correct errors, after performing the procedure there

may still be regions that can be further improved. Such regions may not have been identified
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because they are subregions of a newly-included alignment, or because the threshold was too

low for a seed to be identified due to the very low quality of other another region. In

either situation, it can be beneficial to repeat adaptive local realignment to further increase

accuracy. Accordingly, we iterate the whole process (Figure 4) until a user-defined maximum

number of iterations is reached, or no further improvements are made.

3.4 Combining local and global advising

The quality of the initial alignment that is input to this process is critical, since realignment

only makes local improvements. To identify the best initial alignment, it may be advan-

tageous to use global parameter advising, which is known to aid accuracy (Kececioglu and

DeBlasio, 2013). Local and global parameter advising can be combined in two ways:

(1) local advising on all global alignments, using adaptive local realignment on each

of the alternate alignments considered by global parameter advising with advisor

set P , and then choosing among all 2|P | alternate alignments (for |P | original

global alignments, and |P | locally-advised realignments); and

(2) local advising on the best global alignment, which first selects the global alignment

of highest estimated accuracy, and then only on this selection, performs adaptive

local realignment.

We compare both these ways of combining local and global advising, as well as simply local

advising on the single alignment produced by the default parameter setting, in the next

section.
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4 Assessing adaptive local realignment

We evaluate the performance of adaptive local realignment, and its use in combination with

global advising, through experiments on a collection of protein multiple sequence alignment

benchmarks. A full description of the benchmarks and the universe of parameter settings

used for parameter advising can be found in Kececioglu and DeBlasio (2013), and is briefly

described here.

The benchmark suites used in our experiments consist of reference alignments of proteins

that are largely induced by structurally aligning their known three-dimensional structures.

In particular, we use the BENCH suite of Edgar (2009) supplemented by a selection from the

PALI suite of Balaji et al. (2001). BENCH is in turn is a combination of the BAliBASE (Bahr

et al., 2001), PREFAB (Edgar, 2004), OxBench (Raghava et al., 2003), and SABRE (Van Walle

et al., 2005) suites of benchmarks. The full collection of benchmarks we use consists of 861

reference alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly over-represented

in this collection. To correct for this bias towards easy-to-align benchmarks when evaluating

average advising accuracy, we binned the 861 benchmarks by difficulty, which we measured

by the true accuracy of Opal using its default parameter setting. We then divided the the

full range [0, 1] of accuracies into 10 bins, where bin b for b = 1, ..., 10 contains difficulty

interval ((b−1)/10, b/10], which have 12, 12, 20, 34, 26, 50, 62, 74, 137, and 434 benchmarks,

respectively. We report “average accuracy” uniformly-averaged across bins (rather than

uniformly-averaged across benchmarks). This means that the average alignment accuracy of

Opal using its default parameter setting will be near 50%. Even though the binning is based
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on Opal default alignments, most other standard aligners have default accuracy near 50%

as well: Clustal Omega (Sievers et al., 2011), 47.3%; MUSCLE (Edgar, 2004), 48.4%; and

MAFFT (Katoh et al., 2005), 51.0%. (Note these numbers do not imply that MAFFT, for

instance, is more accurate than Clustal Omega, since if you bin based on an aligner other

than Opal, you will again get a different ranking of these aligners.) We have previously

shown that for the task of global parameter advising, many of the top aligners perform

almost equally well; we chose Opal for local parameter advising as it had the highest global

advising accuracy in prior tests (DeBlasio and Kececioglu, 2017b). We emphasize that the

methodology presented here is general, and can be applied to any other aligner.

We developed a universe of alignment parameter settings by enumerating reasonable

values for each of the tunable parameters for the Opal aligner. In particular, the tunable

parameters for Opal can be written as a 5-tuple (σ, γI , γT , λI , λT ), which represents the

substitution scoring matrix (σ), as well as the the internal (I) and terminal (T ) gap-open (γ)

and gap-extension (λ) penalties. We considered three choices of substitution matrices from

the BLOSUM (Henikoff and Henikoff, 1992) and VTML (Müller et al., 2002) families, two choices

of terminal gap-extension penalties, and three choices each of internal gap-extension, terminal

gap-open, and internal gap-open penalties. In total, we generated a universe of 162 parameter

settings.

We used 12-fold cross validation to assess the increase in accuracy gained by adaptive

local realignment. We first evenly and randomly distributed benchmarks into twelve groups

for each hardness bin; the twelve independent folds were generated by choosing one group

from each bin to be in the testing set, and the other eleven to be in the training set. Finally,

we generated an example alignment for each benchmark in the training or testing set for
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Table 1: Adaptive Local Realignment Hyper-Parameter Selection

Hyper-parameter Range of values Selection

window-width fraction ω 0.05, 0.1, 0.2, 0.3, . . . , 0.7 0.3

window-width lower-bound 5, 10, 20, 30 10

window-width upper-bound 30, 50, 75, 100, 125 30

barrier percentage ρB 5%, 10%, 20%, 30%, . . . , 70% 10%

seed percentage ρS 5%, 10%, 20%, 30%, . . . , 70% 30%

geometric decay rate λ 0.5, 0.66, 0.9, 0.99 0.9

number of iterations 1, . . . , 5, 10, 15, 25 5

each fold using each of the parameters in our universe with the Opal aligner. The results we

report are averages over these twelve folds. (Note that across the twelve folds, every example

alignment is tested on exactly once.)

We trained the estimator coefficients for Facet on the training example sets for each

fold, using the difference-fitting method described in Section 2.2. We found there was very

little change in coefficients between the training folds, so for simplicity we use the estimator

coefficients that are released with the latest version of Facet, which were trained on all

available benchmarks. We also consider the TCS estimator for adaptive local realignment,

and show these results in Section 4.3.

To choose values for the hyper-parameters for adaptive local realignment (such as ω, ρB,

and ρS, as described earlier in Section 3.1), we enumerated the cross product of reasonable

values for these parameters. We used the performance on training benchmarks described
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Figure 5: Accuracy of the default alignment, and different advising methods, within difficulty

bins. The horizontal axis shows all ten benchmarks bins. The vertical axis shows the

accuracy averaged over just the benchmarks in that bin using default parameter settings,

local advising only, global advising only, and the combined advising method using an oracle

set of cardinality k = 10. The bar chart on the right shows the accuracy uniformly averaged

over the bins.

above to find the combination of these settings that gave the highest improvement in accuracy

when local advising was applied to the default alignments from Opal. Table 1 summarizes

these hyper-parameters, the range of values that we considered, and the value that was

selected for use in our experiments. Details on selecting the number of iterations are given

later in Section 4.4.

4.1 Effect of local realignment within difficulty bins

Figure 5 shows alignment accuracy within difficulty bins for default alignments from Opal,

local advising on these default alignments, global advising alone, and local combined with
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global advising (which uses local advising on all alternate alignments considered by global

advising). The optimal oracle set of cardinality k = 10 was used for both local and global

advising.

The improvement gained by adaptive local realignment over the default parameter setting

is most evident in the two most difficult benchmark bins. On these hardest bins, local

advising increases average accuracy by 11.5% and 9.1%, respectively. Furthermore, local

advising boosts accuracy in all ten bins. On average, local advising increases the accuracy

of the default alignments by 4.5% across the bins.

Combining local and global advising together substantially improves accuracy over using

either of these approaches alone. This is again most pronounced on the hardest-to-align

benchmarks. On the bottom two bins, combined local and global advising increases the

accuracy by 23.0% and 25.6% over the default parameter choice. On these bottom-most

bins, local advising increases the accuracy by 5.9% and 6.4% over global advising alone. On

average across bins, combined local and global advising increases accuracy by 8.9% over the

default parameter choice, and local advising by 3.1% over global advising alone.

4.2 Varying advisor set cardinality

Since a new alignment is recomputed for each realignment region and each parameter choice

in the advisor set, the running time grows with the cardinality of the advisor set, so it

may be desirable to use a smaller cardinality to reduce the running time for advising. We

constructed optimal oracle advisor sets for cardinalities k = 2, . . . , 15, and examined their

effect on local advising both alone and in combination with global advising. Figure 6 shows
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average advising accuracies with advisor sets of increasing cardinalities, for local advising

on Opal default alignments, global advising alone, and local combined with global advising.

The figure shows accuracies for both of the strategies described in Section 3.4 for combining

local and global advising: local advising applied to the best alignment from global advising,

and local advising applied to all alignments from global advising. The cardinality of the

advisor set used for both global and local advising is on the horizontal axis, while alignment

accuracy uniformly averaged across bins is on the vertical axis.

The average accuracy for all four approaches eventually reaches a plateau, where adding

further parameter choices to the advisor set no longer improves accuracy. This plateau is

reached at cardinality k=10 for local advising applied to default alignments, and at k=6 for

global advising with or without local advising, but plateaus at a higher accuracy for combined

advising. Across all cardinalities, combined local and global advising improves accuracy by

nearly 4% on average. Note that when local advising is applied to all alignments from global

advising, the combined advisor is now choosing from an expanded set of alternate alignments

whose best accuracy can only be higher than the original set.

These results above again give advising accuracy uniformly-averaged across bins. In con-

trast, if we report advising accuracy uniformly-averaged across benchmarks, Opal with its

default parameter setting achieves accuracy 80.4%; local or global advising alone increases

this accuracy to 82.1% and 81.8%, respectively; and combining both methods increases the

accuracy to 83.1% (all at cardinality k=10). By comparison, the corresponding average accu-

racies of other standard aligners, using their default parameter settings, are: Clustal Omega,

77.3%; MUSCLE, 78.1%; and MAFFT, 79.4%.
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Figure 7: Accuracy of local realignment using the Facet and TCS estimators, for varying

advisor set cardinality. The curves show the accuracy of local realignment, using either the

Facet or TCS estimators, on initial alignments produced by Opal with its default parameter

setting. The horizontal axis is the cardinality of the advisor set for local realignment, where

oracle sets are used for advising. The vertical axis shows alignment accuracy, averaged across

difficulty bins.

4.3 Comparing estimators for local advising

Figure 7 shows the average accuracy of local advising on default alignments using both

Facet and TCS (the next-best estimator for advising; see Kececioglu and DeBlasio (2013)

and DeBlasio and Kececioglu (2017b)). These results used only a single iteration of adaptive

local realignment for both estimators, due to the large increase in running time caused by

calls to the external TCS program. Using TCS for local advising does increase accuracy over

the default alignment, but the increase is less than half that of Facet.
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Table 2: Accuracy of Adaptive Local Realignment Across Iterations

Iteration 1 2 3 4 5 10 15 25

Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%

Table 3: Summary of Adaptive Local Realignment on Default Alignments

Bin 1 2 3 4 5 6 7 8 9 10 Overall

Number of benchmarks 12 12 20 34 26 50 61 74 137 434 861

Number modified 8 7 16 27 19 34 46 61 115 352 685

Percentage modified 67% 58% 80% 79% 73% 68% 74% 82% 84% 81% 80%

Regions per benchmark 1.92 2.17 2.50 1.88 2.23 2.14 2.31 2.16 2.48 2.19 2.23

Columns realigned 75% 73% 76% 70% 75% 77% 74% 73% 75% 72% 73%

Columns replaced 64% 60% 68% 60% 66% 72% 65% 63% 64% 47% 57%

4.4 Effect of iterating local realignment

As discussed in Section 3.3, iterating adaptive local realignment should eventually reach

a state where the alignment no longer improves, or even worse, begins deteriorating due

to noise in the accuracy estimator. Table 2 shows the average accuracy of adaptive local

realignment on default alignments as the number of iterations increases. Both the training

and testing accuracy reach a plateau at around 5 iterations, and this is the number we used

in Sections 4.1 and 4.2.
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4.5 Summarizing the effect of adaptive local realignment

Table 3 summarizes how adaptive local realignment behaves across difficulty bins, during

the first iteration of improving Opal default alignments. The columns are average values for

each of the 10 benchmark bins, and average values across all benchmarks. The first three

rows show how many of the 861 benchmarks are in each bin, as well as the number and

percentage of those with at least one realignment region that was replaced. The last three

rows summarize how much of each alignment changed. The fourth row shows the average

number of realignment regions found for each benchmark; on average about 2 regions were

realigned for each default alignment. The last two rows summarize the percentage of the

original columns that were in realignment regions, and how many of the columns from the

original alignment were replaced. Note that while the percentage of columns covered by

realignment regions stays roughly the same across bins, in the easiest-to-align bin only 47%

of alignment columns were replaced, while in the rest of the bins over 60% of the columns

changed.

4.6 Running time

To give a sense of running time, Opal with adaptive local realignment, averaged across all

benchmarks, takes 110 seconds using an advisor set of cardinality 10 and 5 iterations. This

is up from 36 seconds for 1 iteration, and about 8 seconds using just the default parameter

setting. This high increase in wall-clock time is mainly due to adaptive local realignment, as

currently implemented, not exploiting parallelism in advising. In contrast, global advising

is parallelized, and the average running time of global advising for the same advisor set of
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cardinality 10 is only around 33 seconds. (Note that the number of columns being repeatedly

aligned by global advising is about a factor 1.25 more than for local advising.) When these

two approaches are combined, the average running time increases to 68 and 178 seconds,

respectively, for local advising on the best alignment, and on all alignments, from global

advising.

5 Conclusion

We have presented adaptive local realignment, to our knowledge the first approach that

demonstrably boosts protein multiple sequence alignment accuracy by adaptively realigning

regions with local parameter settings. Applying this new method to alignments initially

computed using an optimal default parameter setting already improves accuracy significantly,

and when combined with global parameter advising to select an initial parameter setting,

this new approach to local parameter advising boosts alignment accuracy greatly.

A new tool that performs both adaptive local realignment and global parameter advising

using the Opal aligner is available at facet.cs.arizona.edu.

Further research

Many directions remain open for further research in local parameter advising. In the context

of global parameter advising, greedy advisor sets, which are designed to work well with a

given accuracy estimator, are known to perform better than estimator-independent oracle

sets (DeBlasio and Kececioglu, 2017b). In the context of local parameter advising, how-

ever, the greedy sets found for global advising performed worse than oracle sets for local
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advising (hence the use of oracle sets in this study). Greedy sets may possibly have under-

performed due to the smaller universe of parameter settings explored here, or because the

known tendency of greedy sets to not generalize well may possibly be exacerbated when they

are applied to local advising. While improving the generalization of greedy sets may require

more fundamental changes to our approach for learning advisor sets, perhaps by simply ex-

ploring a much larger universe of parameter settings and by learning greedy sets specifically

for local parameter advising, advisor sets might be found that perform even better than the

oracle sets used here.

Finally, combining local parameter advising with aligner advising (DeBlasio and Kece-

cioglu, 2015a), which takes in addition a set of aligners and selects both an aligner and its

parameter setting—effectively yielding a method for local ensemble alignment—also seems

promising. Just as a given alignment tool may be particularly well-suited for aligning a class

of proteins with high accuracy (through the developer tailoring the aligner’s models and

methods), so an aligner might for instance have a class of protein structural motifs at which

it excels. Incorporating aligner advising could potentially leverage each aligner’s particular

strength within adaptive local realignment.
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