
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Learning Parameter-Advising Sets
for Multiple Sequence Alignment

Dan DeBlasio and John Kececioglu

Abstract—While the multiple sequence alignment output by an aligner strongly depends on the parameter values used for the
alignment scoring function (such as the choice of gap penalties and substitution scores), most users rely on the single default
parameter setting provided by the aligner. A different parameter setting, however, might yield a much higher-quality alignment for the
specific set of input sequences. The problem of picking a good choice of parameter values for specific input sequences is called
parameter advising. A parameter advisor has two ingredients: (i) a set of parameter choices to select from, and (ii) an estimator that
provides an estimate of the accuracy of the alignment computed by the aligner using a parameter choice. The parameter advisor picks
the parameter choice from the set whose resulting alignment has highest estimated accuracy.

We consider for the first time the problem of learning the optimal set of parameter choices for a parameter advisor that uses a given
accuracy estimator. The optimal set is one that maximizes the expected true accuracy of the resulting parameter advisor, averaged
over a collection of training data. While we prove that learning an optimal set for an advisor is NP-complete, we show there is a natural
approximation algorithm for this problem, and prove a tight bound on its approximation ratio. Experiments with an implementation of
this approximation algorithm on biological benchmarks, using various accuracy estimators from the literature, show it finds sets for
advisors that are surprisingly close to optimal. Furthermore, the resulting parameter advisors are significantly more accurate in practice
than simply aligning with a single default parameter choice.

Index Terms—Multiple sequence alignment, alignment scoring functions, parameter values, accuracy estimation, parameter advising.

F

1 INTRODUCTION

Akey issue in multiple sequence alignment not often
addressed is the choice of parameter values to use for

the alignment scoring function of an aligner. The standard
tools for multiple sequence alignment all use alignment
scoring functions that have many parameters that must be
set, such as the choice of matrix that scores substitutions in
the alignment, and the penalties that are charged for gaps
in the alignment formed by runs of insertions or deletions.
In the face of the multitude of possible settings for these
parameters, most users do not vary parameter values when
computing an alignment of their sequences, but simply rely
on the default parameter choice supplied by the aligner.
The multiple alignment computed by an aligner, however,
can change radically as parameter values are varied, and a
parameter setting other than the default could yield a much
higher-quality alignment of the user’s particular sequences.

To give a concrete example, Figure 1 shows a set
of benchmark protein sequences aligned by the Opal
aligner [2], [3] under two parameter settings: the optimal
default setting, which is the parameter setting that achieves
the highest average true accuracy across a suite of alignment
benchmarks, and a second non-default setting. (Here a pa-
rameter setting is a five-tuple that specifies the substitution
scoring matrix and the values of four gap penalties.) This
particular non-default parameter setting happens to come
from the optimal set of two parameter choices (as discussed

• D. DeBlasio and J. Kececioglu are with the Department of Computer
Science at the University of Arizona, Tucson, AZ 85721, USA.
E-mail: {deblasio,kece}@cs.arizona.edu

A preliminary conference version of this paper appeared as [1]. Corresponding
author: Dan DeBlasio.

in Section 3), and yields a much more accurate alignment of
these sequences.

This begs the question, however, of how can a user in
practice recognize which of these two alignments is more
accurate? In reality, when aligning sequences, the correct
alignment is of course not known, so the true accuracy of a
computed alignment cannot be measured. In this situation,
we rely on an accuracy estimator that is positively correlated
with true accuracy, and we choose the alignment that has
higher estimated accuracy. To provide an illustration, Fig-
ure 2 shows the correlation with true accuracy of three ac-
curacy estimators from the literature on the same collection
of computed alignments.

In the example of Figure 1, under the Facet estima-
tor [4], [5], the alignment of higher true accuracy does in fact
have higher estimated accuracy. So a user armed with Facet
could pick the better parameter choice to use with Opal on
these input sequences.

Combining these ideas of a set of candidate parame-
ter choices and an accuracy estimator, in an automated
procedure, leads to the notion of a parameter advisor that
recommends a parameter setting for an aligner to use on
the given input sequences. In this paper, we study how to
learn the set of parameter choices for a parameter advisor,
both theoretically from the viewpoint of algorithms and com-
plexity, and practically from the standpoint of performance
of an implementation on real biological data.

1.1 Related work

The notion of parameter advising was introduced in
Wheeler and Kececioglu [2] as an often-overlooked stage in
multiple sequence alignment, and was first studied in depth

2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

(a) Higher-accuracy alignment, non-default parameter choice

(b) Lower-accuracy alignment, default parameter choice

Fig. 1. Parameter choice affects the accuracy of computed align-
ments. (a) Part of an alignment of benchmark sup_155 from the
SABRE [6] suite computed by Opal [2] using non-default parame-
ter choice (VTML200, 45, 6, 40, 40); this alignment has accuracy value
75.8%, and Facet [4] estimator value 0.423. (b) Alignment of the
same benchmark by Opal using the optimal default parameter choice
(BLSM62, 65, 9, 44, 43); this alignment has lower accuracy 57.3%, and
lower Facet value 0.402. In both alignments, the positions that cor-
respond to core blocks of the reference alignment, which should be
aligned in a correct alignment, are highlighted in bold.

in DeBlasio, Wheeler, and Kececioglu [7], both with regard
to constructing accuracy estimators, and finding parameter
sets for a perfect advisor called an oracle.

Kececioglu and DeBlasio [4] give a broad survey of
accuracy estimators from the literature. Briefly, estimators
can be categorized as scoring-function-based [7], [8], [9], [10],
[11], which combine local attributes of an alignment into a
score, and support-based [12], [13], [14], [15], which assess the
quality of an alignment in terms of its support from alternate
alignments. Of these estimators, the most accurate for pro-
tein alignments are Facet (DeBlasio et al. [7]), TCS (Chang
et al. [11], which supersedes COFFEE [8]), MOS (Lassmann
and Sonnhammer [12]), PredSP (Ahola et al. [10]), and
GUIDANCE (Penn et al. [14]). Kececioglu and DeBlasio [4]
compare these estimators, except for TCS and GUIDANCE,
and show that Facet, which is a weighted combination
of five real-valued feature functions, strongly outperforms
these other estimators for the task of parameter advising.
Further experiments in this paper show Facet outperforms
TCS and GUIDANCE as well.

The emphasis of our prior work [4], [7] is mainly on
accuracy estimation for parameter advising, resulting in the
Facet estimator [5]. Our prior work presented a class of es-
timators that are polynomials in alignment feature functions,
and gave two techniques for efficiently learning optimal
coefficients for these polynomials via linear and quadratic
programming. This work introduced new feature functions
for protein multiple sequence alignments that make use
of predicted secondary structure, including a feature called
Secondary Structure Blockiness, whose evaluation involves
efficiently computing an optimal packing of blocks of com-
mon secondary structure. Our prior work also showed that
optimal sets of parameter choices for a perfect advisor called
an oracle (that knows the true accuracy of an alignment)
could be found by integer linear programming, which made
the computation of optimal oracle sets feasible in practice,
even for very large cardinalities.

1.2 Our contributions
In this paper we focus on learning sets of parameter choices
for a realistic advisor, where these sets are tailored to the
actual estimator used by the advisor (as opposed to finding

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

F
a
c
e
t

0 10.2 0.4 0.6 0.8
0

1

0.2

0.4

0.6

0.8

Accuracy

T
C

S

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

M
O

S

Fig. 2. Correlation of estimators with true accuracy. Each point in a
scatterplot corresponds to an alignment whose true accuracy is on the
horizontal axis, and whose value under a given estimator is on the ver-
tical axis. The scatterplots show the same set of over 4,000 alignments
under the accuracy estimators Facet [4], TCS [11], and MOS [12].

parameter sets for a perfect but unattainable oracle advisor),
and we formalize for the first time this new problem of
learning an optimal parameter set for an imperfect advisor.
We prove that while learning such sets is NP-complete,
there is an efficient greedy approximation algorithm for this
learning problem, and we derive a tight bound on its worst-
case approximation ratio. Experiments show that the greedy
parameter sets found by the approximation algorithm for an
advisor, that uses Facet, TCS, MOS, PredSP, or GUIDANCE
as its estimator, outperform optimal oracle sets at all cardi-
nalities. Furthermore, on the training data, for some esti-
mators these suboptimal greedy sets perform surprisingly
close to the optimal exact sets found by exhaustive search,
and moreover, these greedy sets actually generalize better
than exact sets. As a consequence, on testing data, for some
estimators the greedy sets output by the approximation
algorithm can actually give superior performance to exact
sets for parameter advising.

1.3 Plan of the paper
In Section 2 we next provide background on estimators and
advisors. Section 3 then defines the new problem of learning
optimal parameter sets for an advisor. Section 4 presents
a greedy approximation algorithm for learning parameter
sets, and proves a tight bound on its approximation ratio.
Section 5 proves that learning optimal parameter sets is
NP-complete. Section 6 presents results from experiments
with our learning algorithms on real biological benchmarks.
Finally Section 7 gives conclusions and provides directions
for further research.

2 ESTIMATORS AND ADVISORS

We first briefly review the concepts of accuracy estimators
and parameter advisors.

2.1 Accuracy estimation
In the approach of our prior work [4], [7] on estimating the
unknown accuracy of an alignment, we assume we have a
collection of d real-valued feature functions g1(A), . . . , gd(A)
on alignments A, where these functions gi are positively
correlated with true accuracy. The alignment accuracy esti-
mators E that we consider are linear combinations of these
functions, E(A) =

∑
1≤i≤d ci gi(A), where the coefficents

c1, . . . , cd specify the estimator E. The true accuracy of an
alignment A is usually measured as a real value in the
range [0, 1], such as the so-called SPS-score [16], which is

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 3

the fraction of substitutions in the core columns of the
ground-truth alignment that are recovered by computed
alignment A. We assume the feature functions have the
range [0, 1]; when the coefficients form a convex combina-
tion (namely ci≥0 and

∑
i ci=1), the resulting estimator E

will then also have the range [0, 1]. Our prior work showed
that this class of linear estimators

∑
i ci gi(A) is as general as

polynomial estimators: any estimator that is a higher-degree
polynomial in the gi(A) can always be reduced to a linear
estimator by appropriately defining new feature functions
that are products of the original feature functions.

Given the feature functions gi, the coefficients of an esti-
mator E can be learned by fitting to true accuracy values on
alignment benchmarks for which the “correct” alignment,
also called a reference alignment, is known. Our prior work
[4], [7] presented two techniques for fitting an estimator,
called difference fitting and value fitting, and reduced these
techniques to linear and quadratic programming.

2.2 Parameter advising
Given an accuracy estimator E, and a set P of parame-
ter choices, a parameter advisor tries each parameter choice
p ∈ P , invokes an aligner to compute an alignment Ap

using p, and then selects the parameter choice p∗ that has
highest estimated accuracy: p∗ = argmaxp∈P E(Ap). Since
such an advisor runs the aligner |P | times on a given set
of input sequences, a crucial aspect of parameter advising
is finding a small set P for which the true accuracy of the
output alignment Ap∗ is high.

Our prior work [4], [7] presented a technique for finding
a small set P that maximizes the true accuracy of a perfect
advisor called an oracle. An oracle has access to the true
accuracy of computed alignments (while an advisor does
not, and must rely on an accuracy estimator); accordingly,
an oracle always selects the parameter choice from P that
has highest true accuracy. For a given cardinality k, an oracle
set is a set S of k parameter choices that maximizes the true
accuracy of the alignments output by an oracle using S.
Our prior work showed that oracle sets could be found by
integer linear programming, and that optimal oracle sets
could be computed in practice up to very large cardinalities
(for example, even for k = 25).

In contrast to finding oracle sets, here we consider how
to learn the optimal set P of a given cardinality that maxi-
mizes the true accuracy of an imperfect advisor that uses a
given estimator.

3 LEARNING OPTIMAL ADVISOR SETS

We now define the computational problem of learning an
optimal set of parameter choices for an advisor using a
given accuracy estimator. Throughout we assume the fea-
tures used by the advisor’s estimator are specified and fixed.

From a machine learning perspective, our problem for-
mulation seeks an advisor with optimal accuracy on a col-
lection of training data. The underlying training data is

• a suite of benchmarks, where each benchmark Bi in the
suite consists of a set of sequences to align, together
with a reference alignment Ri for these sequences that
represents their “correct” alignment, and

• a collection of alternate alignments of these benchmarks,
where each alternate alignment Aij results from align-
ing the sequences in benchmark i using a parameter
choice j that is drawn from a given universe U of
parameter choices.

Here a parameter choice is an assignment of values to all the
parameters of an aligner that may be varied when comput-
ing an alignment. Typically an aligner has multiple parame-
ters whose values can be specified, such as the substitution
scoring matrix and gap penalties for its alignment scoring
function. We represent a parameter choice by a vector whose
components assign values to all these parameters. (So for
protein sequence alignment, a typical parameter choice is a
3-vector specifying the (i) substitution matrix, (ii) gap-open
penalty, and (iii) gap-extension penalty.) The universe U
of parameter choices specifies all the possible parameter
choices that might be used for advising. A particular advisor
will use a subset P ⊆ U of parameter choices that it consid-
ers when advising. In the special case |P | = 1, the single
parameter choice in set P that is available to the advisor is
effectively a default parameter choice for the aligner.

Note that since a reference alignment Ri is known for
each benchmark Bi, the true accuracy of each alternate
alignment Aij for benchmark Bi can be measured by
comparing alignment Aij to the reference Ri. Thus for a
set P ⊆ U of parameter choices available to an advisor,
the most accurate parameter choice j ∈ P to use on
benchmark Bi can be determined in principle by comparing
the resulting alternate alignments Aij to Ri and picking
the one of highest true accuracy. When aligning sequences
in practice, a reference alignment is not known, so an
advisor will instead use its estimator to pick the parameter
choice j ∈ P whose resulting alignment Aij has highest
estimated accuracy.

In the problem formulations below, this underlying
training data is summarized by

• the accuracies aij of alternate alignments Aij , where
accuracy aij measures how well the computed align-
ment Aij agrees with the reference alignment Ri, and

• the feature vectors Fij of these alignments Aij , where
each vector Fij lists the values for Aij of the estima-
tor’s feature functions.

For an estimator that uses d feature functions, each feature
vector Fij is a vector of d feature values,

Fij = (gij1 gij2 · · · gijd) ,

where each feature value gijh is a real number satisfying
0 ≤ gijh ≤ 1. Feature vector Fij is used by the advisor to
evaluate its accuracy estimator E on alignment Aij . Let the
coefficients of the estimator E be given by vector

c = (c1 c2 · · · cd) .

Then the value of accuracy estimator E on alignment Aij is
given by the inner product

Ec(Aij) = c · Fij =
∑

1≤h≤d

ch gijh . (1)

Informally, the objective function that the problem
formulations seek to maximize is the average accuracy

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

achieved by the advisor across the suite of benchmarks
in the training set. The benchmarks may be nonuniformly
weighted in this average to correct for bias in the training
data, such as the over-representation of easy benchmarks
that typically occurs in standard benchmark suites.

A subtle issue that the formulations must take into
account is that when an advisor is selecting a parameter
choice via its estimator, there can be ties in the estimator
value, so there may not be a unique parameter choice that
maximizes the estimator. In this situation, we assume that
the advisor randomly selects a parameter choice among those
of maximum estimator value. Given this randomness, we
measure the performance of an advisor on an input by its
expected accuracy on that input.

Furthermore, in practice any accuracy estimator inher-
ently has error (otherwise it would be equivalent to true
accuracy), and a robust formulation for learning an advisor
should be tolerant of error in the estimator. Let ε ≥ 0
be a given error tolerance, and P be the set of parameter
choices used by an advisor. We define the set Oi(P) of
parameter choices that the advisor could potentially output
for benchmark Bi as

Oi(P) =
{
j ∈ P : Ec(Aij) ≥ e∗i − ε

}
, (2)

where e∗i := max
{
Ec(Aĩ) : ̃ ∈ P

}
is the maximum

estimator value on benchmark Bi. The parameter choice
output by an advisor on benchmarkBi is selected uniformly
at random among those in Oi(P). Note that when ε = 0,
setOi(P) is simply the set of parameter choices that are tied
for maximizing the estimator. A nonzero tolerance ε > 0 can
aid in learning an advisor that has improved generalization
to testing data.

The expected accuracy achieved by the advisor on bench-
mark Bi using set P is then

Ai(P) =
1

|Oi(P)|
∑

j ∈Oi(P)

aij . (3)

In learning an advisor, we seek a set P that maximizes
expected accuracy Ai(P) on the training benchmarks Bi.

Formally, we want an advisor that maximizes the follow-
ing objective function,

fc(P) =
∑
i

wi Ai(P) , (4)

where i indexes the benchmarks, and wi is the weight
placed on benchmark Bi. (The benchmark weights are to
correct for possible sampling bias in the training data.)
In words, objective fc(P) is the expected accuracy of the
parameter choices selected by the advisor averaged across
the weighted training benchmarks, using advisor set P and
the estimator given by coefficients c. We write the objective
function as f(P) without subscript c when the estimator
coefficient vector c is fixed or understood from context.

We now define the problem of finding an optimal set
of parameter choices for advising with a given estimator.
The running time of an advisor grows with the number of
parameter choices it considers, so the problem formulation
bounds the allowed cardinality of the set that it finds, and
seeks the best set within this cardinality bound.

In the definition, Q denotes the set of rational numbers.

Definition 1 (Advisor Set). The Advisor Set problem is the
following. The input is

• cardinality bound k ≥ 1,
• universe U of parameter choices,
• weights wi ∈ Q on the training benchmarks Bi, where

each wi ≥ 0 and
∑

i wi = 1,
• accuracies aij ∈ Q of the alternate alignments Aij ,

where each 0≤aij≤1,
• feature vectors Fij ∈ Qd for the alternate alignments
Aij , where each feature value gijh in vector Fij satis-
fies 0≤gijh≤1,
• estimator coefficient vector c ∈ Qd, where in vector c

each coefficient ch ≥ 0 and
∑

h ch = 1, and
• error tolerance ε ∈ Q where ε ≥ 0.

The output is

• advisor set P ⊆ U of parameter choices with |P | ≤ k,

that maximizes objective fc(P) given by equation (4).

As Section 5 later shows, Advisor Set is NP-complete,
so finding an optimal solution is hard. We next show that a
natural greedy approach will find a near-optimal solution.

4 APPROXIMATION ALGORITHM FOR LEARNING
ADVISOR SETS

As Advisor Set is NP-complete, it is unlikely we can effi-
ciently find advisor sets that are optimal; we can, however,
efficiently find advisor sets that are guaranteed to be close to
optimal, in the following sense. An α-approximation algorithm
for a maximization problem, where α < 1, is a polynomial-
time algorithm that finds a feasible solution whose value
under the objective function is at least factor α times the
value of an optimal solution. Factor α is called the approxi-
mation ratio. In this section we show that for any constant `
with ` ≤ k, there is a simple approximation algorithm for
Advisor Set that achieves approximation ratio `/k.

For constant `, the optimal advisor set of cardinality
at most ` can be found in polynomial time by exhaustive
search (since when ` is a constant there are polynomially-
many subsets of size at most `). The following natural
approach to Advisor Set builds on this idea, by starting
with an optimal advisor set of size at most `, and greedily
augmenting it to one of size at most k. Since augmenting
an advisor set by adding a parameter choice can worsen its
value under the objective function, even if augmented in
the best possible way, the procedure Greedy given below
outputs the best advisor set found across all cardinalities.

procedure Greedy(`, k) begin
Find an optimal subset P ⊆ U of size |P | ≤ `

that maximizes f(P).(
P̃ , ˜̀) :=

(
P,
∣∣P ∣∣)

for cardinalities ˜̀+1, . . . , k do begin
Find parameter choice j∗ ∈ U−P̃ that

maximizes f
(
P̃ ∪ {j∗}

)
.

P̃ := P̃ ∪ {j∗}
if f
(
P̃
)
> f(P) then P := P̃

end
output P

end

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 5

We now show this natural greedy procedure is an ap-
proximation algorithm for Advisor Set.

Theorem 1 (Approximation Ratio). Procedure Greedy is
an (`/k)-approximation algorithm for Advisor Set with
cardinality bound k, and any constant ` with ` ≤ k.

Proof: The basic idea of the proof is to use averaging
over all subsets of size ` from the optimal advisor set of size
at most k, in order to relate the objective function value of
the set found by Greedy to the optimal solution.

To prove the approximation ratio, let

• P ∗ be the optimal advisor set of size at most k,
• P̃ be the optimal advisor set of size at most `,
• P be the advisor set output by Greedy,
• S be the set of all subsets of P ∗ that have size `,
• k̃ be the size of P ∗, and
• ˜̀be the size of P̃ .

Note that if k̃ < `, then the greedy advisor set P
is actually optimal and the approximation ratio holds. So
assume k̃ ≥ `, in which case S is nonempty. Then

f(P) ≥ f(P̃)

≥ max
Q∈S

f(Q) (5)

≥ 1

|S|
∑
Q∈S

f(Q)

=
1

|S|
∑
Q∈S

∑
i

wiAi(Q)

=
1

|S|
∑
Q∈S

∑
i

∑
j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣ , (6)

where inequality (5) holds because P̃ is an optimal set of size
at most ` and each Q is a set of size `, while equation (6) just
changes the order of summation on i and j.

Note that for any subset Q ⊆ P ∗ and any fixed pa-
rameter choice j ∈ Q, the following relationship on sets of
benchmarks holds:{

i : j ∈ Oi(P
∗)
}
⊆

{
i : j ∈ Oi(Q)

}
, (7)

since if choice j is within tolerance ε of the highest estimator
value for P ∗, then j is within ε of the highest value for Q.

Continuing from equation (6), applying relationship (7)
to index i of the innermost sum and observing that the terms
lost are nonnegative, yields the following inequality (8):

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣ . (8)

Now define, for each benchmark i, a parameter
choice J(i) from P ∗ of highest estimator value,

J(i) ∈ argmax
j ∈P∗

{
E(Aij)

}
,

where ties in the maximum estimator value are broken
arbitrarily. Observe that when J(i) ∈ Q, the relationship
Oi(Q) ⊆ Oi(P

∗) holds, since then both Q and P ∗ have the
same highest estimator value (and Q ⊆ P ∗). Thus when
J(i) ∈ Q, ∣∣Oi(Q)

∣∣ ≤ ∣∣Oi(P
∗)
∣∣ . (9)

Returning to inequality (8), and applying relationship (9)
in inequality (10) below,

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
i

∑
Q∈S

∑
j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)
∣∣ (10)

=
1

|S|
∑
i

∣∣∣{Q∈S : J(i)∈Q
}∣∣∣ ∑

j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)
∣∣

=

(
k̃− 1
`− 1

)
(

k̃
`

) ∑
i

∑
j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)
∣∣

=
(
`
/
k̃
)
f(P ∗)

≥
(
`
/
k
)
f(P ∗) .

Thus Greedy achieves approximation ratio at least `/k.
Finally, to bound the running time of Greedy, con-

sider an input instance with d features, n benchmarks, and
m parameter choices in universe U . There are at most m`

subsets of U of size at most `, and evaluating objective
function f on such a subset takesO(d`n) time, so finding the
optimal subset of size at most ` in the first step of Greedy
takes O(d`nm`) time. The remaining for-loop considers at
most k cardinalities, at most m parameter choices for each
cardinality, and evaluates the objective function for each
parameter choice on a subset of size at most k, which
takes O(dk2mn) time. Thus the total time for Greedy is
O(d`nm`+ dk2mn). For constant `, this is polynomial time.

In practice, we can compute optimal advisor sets of
size up to ` = 5 by exhaustive enumeration, as shown in
Section 6.2. Finding an optimal advisor set of size k = 10,
however, is currently far out of reach. Nevertheless, The-
orem 1 shows we can still find reasonable approximations
even for such large advisor sets, since for ` = 5 and k = 10,
Greedy is a (1/2)-approximation algorithm.

We next show it is not possible to prove a greater
approximation ratio than in Theorem 1, as that ratio is in
fact tight.

Theorem 2 (Tightness of Approximation Ratio). The approx-
imation ratio `/k for algorithm Greedy is tight.

Proof: Since the ratio is obviously tight for ` = k,
assume ` < k. For any arbitrary constant 0 < δ < 1−(`/k),
and for any error tolerance 0 ≤ ε < 1, consider the following
infinite class of instances of Advisor Set with:

6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

• benchmarks 1, 2, . . . , n,
• benchmark weights wi = 1/n,
• cardinality bound k = n, and
• universe U = {0, 1, . . . , n} of n+1 parameter choices.

The estimator values for all benchmarks i are,

E(Aij) =

 1, j = 0;
(1−ε)/2, i = j > 0;
0, otherwise;

which can be achieved by appropriate feature vectors Fij .
The alternate alignment accuracies for all benchmarks i are,

aij =

 (`/k) + δ, j = 0;
1, i = j > 0;
0, otherwise.

For such an instance of Advisor Set, an optimal set of size
at most k is P ∗ = {1, . . . , n}, which achieves f(P ∗) = 1.
Every optimal set P̃ of size at most ` < k satisfies P̃ ⊇ {0}:
it cannot include all of parameter choices 1, 2, . . . , n, so
to avoid getting accuracy 0 on a benchmark it must
contain parameter choice j = 0. Moreover, every such
set P̃ ⊇ {0} has average accuracy f

(
P̃
)
= (`/k) + δ: pa-

rameter choice j = 0 has the maximum estimator value 1
on every benchmark, and no other parameter choice j 6= 0
has estimator value within ε of the maximum, so on every
benchmark Ai

(
P̃
)
= (`/k) + δ. Furthermore, every greedy

augmentation P ⊇ P̃ also has this same average accuracy
f(P) = f

(
P̃
)
. Thus on this instance the advisor set P

output by Greedy has approximation ratio exactly

f(P)

f(P ∗)
=

`

k
+ δ .

Now suppose the approximation ratio from Theorem 1 is
not tight, in other words, that an even better approximation
ratio α > `/k holds. Then take δ =

(
α− (`/k)

)
/2, and

run Greedy on the above input instance. On this instance,
Greedy only achieves ratio

`

k
+ δ =

1

2

(
`

k
+ α

)
< α ,

a contradiction. So the approximation ratio is tight.

5 COMPLEXITY OF LEARNING OPTIMAL ADVISORS

We now prove that Advisor Set, the problem of learning
an optimal parameter set for an advisor (given by Defini-
tion 1 of Section 3) is NP-complete, and hence is unlikely
to be efficiently solvable in the worst-case. As is standard,
we prove NP-completeness for a decision version of this
optimization problem, which is a version whose output is a
yes/no answer (as opposed to a solution that optimizes an
objective function).

The decision version of Advisor Set has an additional
input ` ∈ Q, which will lower bound the objective func-
tion. The decision problem is to determine, for the input
instance k, U,wi, aij , Fij , c, ε, `, whether or not there exists
a set P ⊆ U with |P | ≤ k for which the objective function
has value fc(P) ≥ `.

Theorem 3 (NP-completeness of Advisor Set). The decision
version of Advisor Set is NP-complete.

Proof: We use a reduction from the Dominating Set
problem, which is NP-complete [17, problem GT2]. The
input to Dominating Set is an undirected graph G = (V,E)
and an integer k, and the problem is to decide whether or
not G contains a vertex subset S ⊆ V with |S|≤k such that
every vertex in V is in S or is adjacent to a vertex in S. Such
a set S is called a dominating set for G.

Given an instance G, k of Dominating Set, we construct
an instance U,wi, aij , Fij , c, ε, ` of the decision version of
Advisor Set as follows. For the cardinality bound use
the same value k, for the number of benchmarks take
n= |V |, and index the universe of parameter choices by
U = {1, . . . , n}; have only one feature (d=1) with estimator
coefficients c=1; use weights wi=1/n, error tolerance ε=0,
and lower bound ` = 1. Let the vertices of G be indexed
V = {1, . . . , n}. (So both the set of benchmarks and the
universe of parameter choices in essence correspond to the
set of vertices V of graph G.) Define the neighborhood of
vertex i in G to be N(i) :=

{
j : (i,j) ∈ E

}
∪ {i}, which is

the set of vertices adjacent to i, including i itself. For the
alternate alignment accuracies, take aij =1 when j ∈ N(i);
otherwise, aij=0. For the feature vectors, assign Fij = aij .

We claim G, k is a yes-instance of Dominating Set iff
k, U,wi, aij , Fij , c, ε, ` is a yes-instance of Advisor Set.

To show the forward implication, suppose G has a dom-
inating set S ⊆ V with |S| ≤ k, and consider the advisor
set P = S. With the above construction, for every bench-
mark, set Oi(P) = N(i) ∩ S, which is nonempty (since S is
a dominating set for G). So Ai(P) = 1 for all benchmarks.
Thus for this advisor set P , the objective function has
value fc(P) = 1 ≥ `.

For the reverse implication, suppose advisor set P
achieves objective value ` = 1. Since P achieves value 1, for
every benchmark it must be thatAi(P) = 1. By construction
of the aij , this implies that in G every vertex i ∈ V is in P
or is adjacent to a vertex in P . Thus set S = P , which
satisfies |S| ≤ k, is a dominating set for G.

This reduction shows Advisor Set is NP-hard, as the
instance of Advisor Set can be constructed in polynomial
time. Furthermore, it is in NP, as we can nondeterministi-
cally guess an advisor set P , and then check whether its
cardinality is at most k and its objective value is at least ` in
polynomial time. Thus Advisor Set is NP-complete.

Note that the proof of Theorem 3 shows Advisor Set is
NP-complete for the special case of a single feature, error
tolerance zero, when all accuracies and feature values are
binary, and benchmarks are uniformly weighted.

In general, we would like to find an optimal parameter
advisor, which requires simultaneously finding both the
best possible parameter set and the best possible accuracy
estimator. We define the general problem of constructing an
optimal parameter advisor as follows.

Definition 2 (Optimal Advisor). The input to Optimal Ad-
visor is cardinality bound k, parameter universe U ,
benchmark weights wi, alignment accuracies aij , feature
vectors Fij , and error tolerance ε. The output is

• advisor set P ⊆ U with |P | ≤ k, and
• estimator coefficients c∈Qd with ci≥0 and

∑
i ci = 1,

that maximize objective fc(P) defined in equation (4).

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 7

The decision version of Optimal Advisor, similar to the
decision version of Advisor Set, has an additional input `
that lower bounds the objective function.

We next prove that Optimal Advisor is NP-complete.
While its NP-hardness follows from Advisor Set, the dif-
ficulty is in proving that this more general problem is still
in the class NP.

Theorem 4 (NP-completeness of Optimal Advisor). The
decision version of Optimal Advisor is NP-complete.

Proof: The proof of Theorem 3 shows Advisor Set
remains NP-hard for the special case of a single feature.
To prove the decision version of Optimal Advisor is NP-
hard, we use restriction: we simply reduce Advisor Set with
a single feature to Optimal Advisor (reusing the instance of
Advisor Set for Optimal Advisor). On this restricted input
with d = 1, Optimal Advisor is equivalent to Advisor Set,
so Optimal Advisor is also NP-hard.

We now show the general Optimal Advisor problem
is in class NP. To decide whether its input is a yes-
instance, after first nondeterministically guessing parameter
set P ⊆ U with |P | ≤ k, we then make for each bench-
mark i a nondeterministic guess for its sets Oi(P) and
Mi(P) := argmax

{
c · Fij : j ∈ P

}
, without yet knowing

the coefficient vector c. Call Õi the guess for set Oi(P),
and M̃i the guess for set Mi(P), where M̃i ⊆ Õi ⊆ P .
To check whether a coefficient vector c exists that satisfies
Oi(P) = Õi and Mi(P) = M̃i, we construct the following
linear program with variables c = (c1 · · · cd) and ξ. The
objective function for the linear program is to maximize
the value of variable ξ. The constraints are: ch ≥ 0 and∑

1≤h≤d ch = 1; 0 ≤ ξ ≤ 1; for all benchmarks i and all
parameter choices j∗ ∈ M̃i and j 6∈ M̃i,

c · Fij∗ ≥ c · Fij + ξ ;

for all benchmarks i and all parameter choices j, ̃ ∈ M̃i,

c · Fij = c · Fĩ ;

for all benchmarks and all parameter choices j∗ ∈ M̃i and
j ∈ Õi,

c · Fij ≥ c · Fij∗ − ε .

This linear program can be solved in polynomial time. If it
has a feasible solution, then it has an optimal solution (as its
objective function is bounded). In an optimal solution c∗, ξ∗

we check whether ξ∗>0. If this condition holds, the guessed
sets Õi, M̃i, correspond to actual sets Oi(P) andMi(P) for
an estimator. For each benchmark i, we then evaluateAi(P),
and check whether

∑
i wiAi(P) ≥ `. Note that after guess-

ing the sets P , Õi, and M̃i, the rest of the computation runs
in polynomial time. Thus Optimal Advisor is in NP.

We next turn to experimental evaluation on real data.

6 EXPERIMENTAL RESULTS

We evaluate the performance of our approach to learn-
ing parameter sets through experiments on a collection of
protein multiple sequence alignment benchmarks. A full
description of the benchmarks, and the construction of a
universe U of parameter choices appropriate for protein

alignment, is given in [4] and is briefly summarized below.
In the experiments, we compare parameter advisors that
use five different estimators from the literature: MOS [12],
PredSP [10], GUIDANCE [14], Facet [4], and TCS [11].

The benchmark suites used in our experiments consist of
reference alignments of proteins that are largely induced by
structurally aligning their known three-dimensional struc-
tures. In particular, we use the BENCH suite of Edgar [18],
supplemented by a selection from the PALI suite of Balaji
et al. [19]. The full benchmark collection we use consists of
861 reference alignments. When evaluating the GUIDANCE
estimator, which only applies to alignments with at least
four sequences, we use a subset of this collection consisting
of all 605 reference alignments with this many sequences.

As is common in benchmark suites, easy-to-align bench-
marks are highly over-represented in this collection. To cor-
rect for this bias toward easy benchmarks when evaluating
average advising accuracy, we binned the 861 benchmarks
in our collection by hardness, which we measured by the true
accuracy of the alignment of the benchmark’s sequences
computed using the multiple alignment tool Opal [2], [3]
under its optimal default parameter choice. We then divided
the full range [0, 1] of accuracies into 10 bins, where bin b for
b = 1, . . . , 10 contains hardness interval

(
(b−1)/10, b/10

]
.

The weight wi of benchmark Bi falling in bin b that we used
for training is wi = (1/10)(1/nb), where nb is the number
of benchmarks in bin b. These weights wi are such that each
bin contributes equally to objective f(P), which in effect
measures advising accuracy uniformly averaged across the
full range of hardnesses.

Notice that with this uniform weighting of bins, the
singleton advising set P containing only the optimal de-
fault parameter choice will tend to an average advising
accuracy f(P) of 50% (illustrated later in Figure 3). This
establishes, as a point of reference, average accuracy 50% as
the baseline against which to compare advising performance.

Note that if we instead measure advising accuracy by
uniformly averaging over benchmarks, then the predomi-
nance of easy benchmarks (for which little improvement
is possible over the default parameter choice) makes both
good and bad advisors tend to an average accuracy of
nearly 100%. By uniformly averaging over bins, we can
discriminate among advisors, though the average advising
accuracies we report are now pulled down from 100%
toward 50%.

For each benchmark in our collection, we generated
alternate alignments of its sequences using the Opal aligner
invoked with each parameter choice from universe U . A
parameter choice for Opal is a five-tuple (σ, γI , γE , λI , λE) of
parameter values, where

• σ specifies the amino acid substitution scoring matrix,
• γE and λE specify the gap-open and gap-extension

penalties for external gaps in the alignment (also called
terminal gaps) that insert or delete prefixes or suffixes
of the sequences, and
• γI and λI specify the corresponding gap penalties for

internal gaps (also called non-terminal gaps).

To form the universe U of parameter choices, we first
considered eight substitution matrices from the BLOSUM [20]
and VTML [21] families (whose entries were scaled to inte-

8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

gers in the range [0, 100]), combined with over 2,100 four-
tuples of gap penalties (whose values varied in a range
around the default parameter values for Opal). This initial
set of roughly 16,900 parameter choices (each substitution
matrix paired with each gap-penalty assignment) was then
reduced by selecting, for each of the 10 hardness bins,
their 25 most accurate parameter choices: those with the
highest average accuracy on the benchmarks in the bin
(when used in Opal). Unioning these top choices from all
bins (and removing duplicates) gave the final universe U ,
which consists of 243 parameter choices.

To generate training and testing sets for our experiments
on learning advisor sets, we used 12-fold cross validation. For
each hardness bin, we evenly and randomly partitioned the
benchmarks in the bin into twelve groups; we then formed
twelve splits of the entire collection of benchmarks into a
training class and a testing class, where each split placed
one group in a bin into the testing class and the other eleven
groups in the bin into the training class; finally, for each
split we generated a training set and a testing set of example
alignments as follows: for each benchmark B in a training
or testing class, we generated |U | example alignments in the
respective training or testing set by running Opal onB with
each parameter choice from U . An estimator learned on the
examples from a training set was evaluated on examples
from the corresponding testing set. The results we report
are averages over twelve folds, where each fold is one of
these pairs of associated training and testing sets. (Note that
across the twelve folds, every example is tested on exactly
once.) Each fold contains over 190,000 training examples.

When evaluating the GUIDANCE estimator, we used
4-fold cross validation on the reduced benchmark collection
described earlier, with folds generated by the above proce-
dure. Each of these folds has over 109,000 training examples.

6.1 The Facet estimator
The quality of an advisor strongly depends on the quality of
its estimator. In turn, the quality of the estimator constructed
by the approach of Section 2.1, embodied in Facet [5], [7],
strongly depends on the quality of its feature functions.
These features should correlate well with true accuracy, be
efficiently computable, and have bounded value. In practice,
the best features for accuracy estimation of protein sequence
alignments tend to use secondary structure predicted from
the sequences; in our experiments, we predicted protein
secondary structure using PSIPRED [22].

Our accuracy estimator Facet is a linear combination of
the following five feature functions, which we summarize
briefly. Full details are in [4].

(1) The feature Secondary Structure Blockiness measures
the fraction of substitutions in the alignment that are
in an optimal packing of secondary structure blocks,
where a secondary structure block is a subset of the
alignment’s rows and a consecutive interval of its
columns such that all amino acids in the block have
the same predicted secondary structure.

(2) Secondary Structure Agreement is the probability that
the amino acids paired by substitutions share the
same secondary structure, based on predicted sec-
ondary structure for the surrounding sequence.

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k	 	 	 = 5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(12)

(12) (20)

(34)

(26)

(50)
(62)

(74)
(137)

(434)
100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k = 10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(434) 100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k = 15

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

Fig. 3. Advising accuracy of Facet within benchmark bins. These bar
charts show the advising accuracy of various approaches to finding advi-
sor sets, for cardinality k=5, 10, 15. For each cardinality, the horizontal
axis of the chart on the left corresponds to benchmark bins, and the
vertical bars show advising accuracy averaged over the benchmarks in
each bin. Black bars give the accuracy of the optimal default parameter
choice, and red bars give the accuracy of advising with Facet using the
greedy set. The dashed line shows the limiting performance of a perfect
advisor: an oracle with true accuracy as its estimator using an optimal
oracle set. In the top chart, the numbers in parentheses above the bars
are the number of benchmarks in each bin. The bar charts on the right
show advising accuracy uniformly averaged over the bins.

(3) Secondary Structure Identity measures the fraction of
substitutions whose amino acids share the same pre-
dicted secondary structure.

(4) Gap Open Density counts the number of runs of null
characters (or dashes) in the rows of the alignment,
normalized by the total length of the runs.

(5) Average Substitution Score is the average score
of the substitutions in the alignment under the
BLOSUM62 [20] scoring matrix.

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 9

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Testing
Facet

50%

51%

52%

53%

54%

55%

56%

57%

58%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Training
Facet

Fig. 4. Advising using exact, greedy, and oracle sets with Facet. The plots show advising accuracy using the Facet estimator with parameter
sets learned by the optimal exact algorithm and the greedy approximation algorithm for Advisor Set, and with oracle sets. The horizontal axis is
the cardinality of the advisor set, while the vertical axis is the advising accuracy averaged over the benchmarks. Exact sets are known only for
cardinalities k ≤ 5; greedy sets are augmented from the exact set of cardinality ` = 1. The left and right plots show accuracy on the testing and
training data, respectively, where accuracies are averaged over all testing or training folds.

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = .1%)
 l = 3 (ε = .75%)
 l = 4 (ε = 0%)
 l = 5 (ε = 0%)

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = 5%)
 l = 3 (ε = 5%)
 l = 4 (ε = 5%)
 l = 5 (ε = 5%)

TCS

Fig. 5. Greedily augmenting exact advisor sets. The left and right plots show advising accuracy using the Facet and TCS estimators respectively,
with advisor sets learned by procedure Greedy, which augments an exact set of cardinality ` to form a larger set of cardinality k > `. Each curve
is greedily augmenting from a different exact cardinality `. The horizontal axis is the cardinality k of the augmented set; the vertical axis is advising
accuracy on testing data, averaged over all benchmarks and all folds.

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0% ε = 1%
 ε = 0.05% ε = 2%
 ε = 0.1% ε = 5%
 ε = 0.5% Oracle

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0%
 ε = 1%
 ε = 2%
 ε = 5%
 Oracle

TCS

Fig. 6. Effect of error tolerance on advising accuracy using greedy sets. The plots show advising accuracy on testing data using greedy sets learned
for the two best estimators, Facet and TCS, at various error tolerances ε≥0. The plots on the left and right are for Facet and TCS, respectively. For
comparison, both plots also include a curve showing performance using the estimator on oracle sets, drawn with a dashed line. The solid curves
with circles and diamonds highlight the best overall error tolerance of ε = 0.

10 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

6.2 Learning advisor sets by different approaches

We first study the advising accuracy of parameter sets
learned for the Facet estimator by different approaches.
Our protocol began by constructing an optimal oracle set
for cardinalities 1 ≤ k ≤ 20 for each training instance.
A coefficient vector for the advisor’s estimator was then
found for each of these oracle sets by the difference-fitting
method described in [4]. Using this estimator learned for the
training data, exhaustive search was done to find optimal
exact advisor sets for cardinalities k ≤ 5. The optimal exact
set of size ` = 1 (the best default parameter choice) was
then used as the starting point to find near-optimal greedy
advisor sets by our approximation algorithm for k ≤ 20.
Each of these advisors (an advising set combined with the
estimator) was then used for parameter advising in Opal,
returning the computed alignment with highest estimator
value. These set-finding approaches are compared based
on the accuracy of the alignment chosen by the advisor,
averaged across bins.

Figure 4 shows the performance of these advisor sets
under twelve-fold cross validation. The left plot shows
advising accuracy on the testing data averaged over the
folds, while the right plot shows this on the training data.

Notice that while there is a drop in accuracy when an
advising set learned using the greedy and exact methods is
applied to the testing data, the drop in accuracy is greatest
for the exact sets. The value of ε shown in the plot maximizes
the accuracy of the resulting advisor on the testing data.
Notice also that for cardinality k ≤ 5 (for which exact sets
could be computed), on the testing data the greedy sets are
often performing as well as the optimal exact sets.

Figure 3 shows the performance within each benchmark
bin when advising with Facet using greedy sets of cardi-
nality k=5, 10, 15, from top to bottom. Notice that for many
bins, the performance is close to the best-possible accuracy
attainable by any advisor, shown by the dashed line for a
perfect oracle advisor. The greatest boost over the default
parameter choice is achieved on the bottom bins that contain
the hardest benchmarks.

6.3 Varying the exact set for the greedy algorithm

To find the appropriate cardinality ` of the initial exact
solution that is augmented within approximation algorithm
Greedy, we examined the advising accuracy of the greedy
sets learned when using cardinalities 1 ≤ ` ≤ 5. Figure 5
shows the accuracy of the resulting advisor using greedy
sets of cardinality 1 ≤ k ≤ 20, augmented from exact sets of
cardinality 1 ≤ ` ≤ 5, using for the estimator both Facet
and TCS. (These are the two best estimators, as discussed
in Section 6.5 below). The points plotted with circles show
the accuracy of the optimal exact set that is used within
procedure Greedy for augmentation.

Notice that the initial exact set size ` has relatively little
effect on the accuracy of the resulting advisor; at most
cardinalities, starting from the single best parameter choice
(` = 1) has highest advising accuracy. This is likely due to
the behavior observed earlier in Figure 4, namely that exact
sets do not generalize as well as greedy sets.

6.4 Varying the error tolerance for the greedy algorithm

When showing experimental results, an error tolerance ε has
always been used that yields the most accurate advisor on
the testing data. Prior to conducting these experiments, our
expectation was that a nonzero error tolerance ε > 0 would
boost the generalization of advisor sets. Figure 6 shows the
effect of different values of ε on the testing accuracy of an
advisor using greedy sets learned for the Facet and TCS
estimators. (While the same values of ε were tried for both
estimators, raw TCS scores are integers in the range [0, 100]
which were scaled to real values in the range [0, 1], so for
TCS any ε<0.1 is equivalent to ε=0.) No clear relationship
between testing accuracy and error tolerance is evident,
though for Facet and TCS alike, setting ε = 0 generally
gives the best overall advising accuracy.

6.5 Learning advisor sets for different estimators

In addition to learning advisor sets for Facet [4], we
also learned sets for the best accuracy estimators from
the literature: namely, TCS [11], MOS [12], PredSP [10],
and GUIDANCE [14]. The scoring-function-based accuracy
estimators TCS, PredSP, and GUIDANCE do not have any
dependence on the advisor set cardinality or the train-
ing benchmarks used. The support-based estimator MOS,
however, requires a set of alternate alignments in order
to compute its estimator value on an alignment. In each
experiment, an alignment’s MOS value was computed us-
ing alternate alignments generated by aligning under the
parameter choices in the oracle set; if the parameter choice
being tested on was in the oracle set, it was removed from
this collection of alternate alignments.

After computing the values of these estimators, exhaus-
tive search was used to find optimal exact sets of cardinality
` ≤ 5 for each estimator, as well as greedy sets of cardinality
k ≤ 20 (augmenting from the exact set for ` = 1).

The tendency of exact advisor sets to not generalize
well is even more pronounced when accuracy estimators
other than Facet are used. Figure 7 shows the performance
on testing and training data of greedy, exact, and oracle
advisor sets learned for the best three other estimators:
TCS, MOS, and PredSP. The results for greedy advisor sets
for TCS at cardinalities larger than 5 have similar trend to
those seen for Facet (with now a roughly 1% accuracy
improvement over the oracle set), but surprisingly with
TCS its exact set always has lower testing accuracy than
its greedy set. Interestingly, for MOS its exact set rarely has
better advising accuracy than the oracle set. For PredSP, at
most cardinalities (with the exception of k = 3) the exact
set has higher accuracy than the greedy set on testing data,
though this is offset by the low accuracy of the estimator.

We also tested GUIDANCE, Facet, and TCS on the re-
duced suite of all benchmarks with at least four sequences
(as required by GUIDANCE). Figure 8 shows the advising
accuracy of set-finding methods using these estimators on
these benchmarks. Notice that on this reduced suite the
results generally stay the same, though for Facet there
is more of a drop in performance of the exact set from
training to testing, and the set found by Greedy generally
has greater accuracy on the reduced suite than the full suite.

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 11

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Training

Fig. 7. Comparing testing and training accuracies of various estimators. The plots show the advising accuracies on testing and training data using
TCS, MOS, and PredSP with parameter sets learned for these estimators by the exact and greedy algorithms for Advisor Set, and with oracle sets.
From top to bottom, the estimators used are TCS, MOS, and PredSP, with testing data plotted on the left, and training data on the right.

Finally, a complete comparison of the advising perfor-
mance of all estimators using greedy sets is shown in Fig-
ure 9. (The plot on the right shows advising accuracy on
testing data for GUIDANCE, Facet, and TCS on the reduced
suite of benchmarks with at least four sequences.) Advising
with each of these estimators tends to eventually reach
an accuracy plateau, though their performance is always
boosted by using advisor sets larger than a singleton default
choice. The plateau for Facet (the top curve in the plots)
generally occurs at the greatest cardinality and accuracy.

6.6 Parameter choices in greedy advisor sets
Table 1 lists the parameter choices in the advisor sets found
by the greedy approximation algorithm (augmenting from
the optimal set of cardinality `=1) for the Opal aligner with

the Facet estimator for cardinalities k ≤ 20, on one fold of
training data. (The greedy sets vary slightly across folds.)
In the table, the greedy set of cardinality k contains the
parameter choices at rows 1 through k. (The entry at row 1
is the optimal default parameter choice.) Again a parameter
choice is five-tuple (σ, γI , γE , λI , λE), where γI and γE are
gap-open penalties for non-terminal and terminal gaps re-
spectively, and λI and λE are corresponding gap-extension
penalties. The scores in the substitution matrix σ are dis-
similarity values scaled to integers in the range [0, 100].
(The associated gap penalty values in a parameter choice
relate to this range.) The accuracy column gives the average
advising accuracy (in Opal using Facet) of the greedy set
of cardinality k on training data, uniformly averaged over

12 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Training

Fig. 8. Comparing testing and training accuracies of estimators on benchmarks with at least four sequences. The plots show advising accuracies
for testing and training data on benchmarks with at least four sequences, using Facet, TCS, and GUIDANCE with exact, greedy, and oracle sets.

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0%) MOS (ε = .1%)
 TCS (ε = 0%) PredSP (ε = .2%)

Various

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0.5%) Guidance (ε = 0.5%)
 TCS (ε = 1%) Default

Various

Fig. 9. Comparing all estimators on greedy advisor sets. The plots show advising accuracy on greedy sets learned for the estimators Facet, TCS,
MOS, PredSP, and GUIDANCE. The vertical axis is advising accuracy on testing data, averaged over all benchmarks and all folds. The horizontal
axis is the cardinality k of the greedy advisor set. Greedy sets are augmented from the exact set of cardinality `=1. The plot on the left uses the
full benchmark suite; the plot on the right, which includes GUIDANCE, uses a reduced suite of all benchmarks with at least four sequences.

DEBLASIO AND KECECIOGLU: LEARNING PARAMETER-ADVISING SETS FOR MULTIPLE SEQUENCE ALIGNMENT 13

TABLE 1
Greedy Advisor Sets for Opal Using Facet

Cardinality Parameter choice Average
k (σ, γI , γE , λI , λE) advising accuracy
1

(
VTML200, 50, 17, 41, 40

)
51.2%

2
(
VTML200, 55, 30, 45, 42

)
53.4%

3
(
BLSUM80, 60, 26, 43, 43

)
54.5%

4
(
VTML200, 60, 15, 41, 40

)
55.2%

5
(
VTML200, 55, 30, 41, 40

)
55.6%

6
(
BLSUM45, 65, 3, 44, 43

)
56.1%

7
(
VTML120, 50, 12, 42, 39

)
56.3%

8
(
BLSUM45, 65, 35, 44, 44

)
56.5%

9
(
VTML200, 45, 6, 41, 40

)
56.6%

10
(
VTML120, 55, 8, 40, 37

)
56.7%

11
(
BLSUM62, 80, 51, 43, 43

)
56.8%

12
(
VTML120, 50, 2, 45, 44

)
56.9%

13
(
VTML200, 45, 6, 40, 40

)
57.0%

14
(
VTML40, 50, 2, 40, 40

)
57.1%

15
(
VTML200, 50, 12, 43, 40

)
57.2%

16
(
VTML200, 45, 11, 42, 40

)
57.3%

17
(
VTML120, 60, 9, 40, 39

)
57.3%

18
(
VTML40, 50, 17, 40, 38

)
57.4%

19
(
BLSUM80, 70, 17, 42, 41

)
57.4%

20
(
BLSUM80, 60, 3, 42, 42

)
57.6%

benchmark bins. Recall this averaging will tend to yield
accuracies close to 50%.

Interestingly, while BLOSUM62 [20] is the substitution
scoring matrix most commonly used by standard aligners,
it does not appear in a greedy set until cardinality k = 11.
The VTML family [21] appears more often than BLOSUM.
The plateau in advising accuracy seen in earlier plots is
also indicated in this training instance, though ever more
gradual improvement remains as cardinality k increases.

6.7 Shared structure across advisor sets
To assess the similarity of advisor sets found by the three
approaches considered in our experiments — greedy sets
via the approximation algorithm, exact sets via exhaustive
search, and oracle sets via integer linear programming — we
examine their overlap both within and between folds.

Table 2 shows the composition of the greedy, exact, and
oracle sets for the training instance in one fold, at cardinal-
ity k = 2, 3, 4 and tolerance ε=0. A non-blank entry in the
table indicates that the parameter choice at its row is con-
tained in the advisor set at its column. (The column labeled
“default” indicates the optimal default parameter choice for the
fold, or equivalently, the exact set of cardinality k=1.) The
value in parentheses at an entry is the number of folds (for
twelve-fold cross-validation) where that parameter choice
appears in that advisor set. (For example, at cardinality
k=4, the second parameter choice (VTML200, 55, 30, 45, 42)
is in the greedy, exact, and oracle sets for this particular fold,
and overall is in exact sets for 9 of 12 folds, including this
fold.) Surprisingly, the default parameter choice (the best
single choice) never appears in the exact or oracle sets for
this fold at any of the cardinalities beyond k=1, and also is
reused as the default in only one other fold. In general there

TABLE 2
Composition of Advisor Sets at Different Cardinalities k

Parameter choice Advisor set
(σ, γI , γE , λI , λE) Default Greedy Exact Oracle

k = 2(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(2) (3) (1)(
BLSUM80, 60, 9, 43, 42

)
(2)(

BLSUM45, 65, 35, 44, 44
)

(3)

k = 3(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (5) (1)(
BLSUM80, 60, 26, 43, 43

)
(2) (2)(

VTML200, 55, 30, 41, 40
)

(6)(
VTML40, 45, 29, 40, 39

)
(7)(

BLSUM62, 65, 16, 44, 42
)

(8)

k = 4(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (9) (6)(
BLSUM80, 60, 26, 43, 43

)
(2)(

VTML200, 60, 15, 41, 40
)

(1)(
VTML200, 45, 6, 40, 40

)
(8) (1)(

VTML200, 55, 30, 41, 40
)

(8)(
BLSUM80, 55, 19, 43, 42

)
(1)(

VTML40, 45, 29, 40, 39
)

(4)(
BLSUM62, 65, 35, 44, 42

)
(3)

TABLE 3
Number of Folds Where Greedy and Exact Sets Share Parameters

Intersection Advisor set cardinality
cardinality k = 2 k = 3 k = 4 k = 5

0 9 4 3 2
1 3 5 6 5
2 0 3 3 4
3 0 0 1
4 0 0
5 0

is relatively little overlap between these advisor sets: often
just one and at most two parameter choices are shared.

Table 3 examines whether this trend continues at other
folds, by counting how many training instances (out of
the twelve folds) share a specified number of parameter
choices between their greedy and exact sets, for a given
advisor set cardinality k. (For example, at cardinality k=4,
six training instances share exactly one parameter choice
between their greedy and exact sets; in fact, the fold shown
in Table 2 is one such instance.) On the whole, the two
“estimator-aware” advisor sets — the greedy and exact sets
—are relatively dissimilar, and never share more than dk/2e
parameter choices.

7 CONCLUSION

We have introduced the new problem of learning optimal
parameter sets for an advisor, and have shown that while

14 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

this problem is NP-complete, an efficient greedy approxi-
mation algorithm for learning parameter sets is remarkably
close to optimal in practice. Moreover, these parameter sets
significantly boost the accuracy of an aligner compared to
a single default parameter choice, when advising using the
best accuracy estimators from the literature.

7.1 Further research

The main frontier to next explore for further improving
parameter advisors is whether new, easily-computable fea-
ture functions on multiple alignments can be discovered that
have stronger correlation with true accuracy. Improving the
accuracy estimator through better feature functions is likely
to give the greatest boost in advising accuracy. Finally, it
may be worth noting that the advising framework presented
here is actually independent of multiple sequence alignment,
and might be fruitfully applied beyond alignment to parame-
ter advising problems in other contexts as well.

8 ACKNOWLEDGEMENTS

We would like to thank William Pearson for pointing us to
the VTML family [21] of substitution scoring matrices. This
work was supported by US National Science Foundation
Grant IIS-1217886 to J.K., and a PhD fellowship to D.D.
from the University of Arizona IGERT in Comparative
Genomics through US National Science Foundation Grant
DGE-0654435.

REFERENCES

[1] D. DeBlasio and J. Kececioglu, “Learning parameter sets for
alignment advising,” Proceedings of the 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics (ACM-
BCB), pp. 230–239, 2014.

[2] T. J. Wheeler and J. D. Kececioglu, “Multiple alignment by aligning
alignments,” Proceedings of the 15th ISCB Conference on Intelligent
Systems for Molecular Biology (ISMB), Bioinformatics, vol. 23, no. 13,
pp. i559–i568, Jul. 2007.

[3] ——, “Opal: software for aligning multiple biological sequences
(version 2.1.0),” http://opal.cs.arizona.edu, 2012.

[4] J. Kececioglu and D. DeBlasio, “Accuracy estimation and param-
eter advising for protein multiple sequence alignment,” Journal of
Computational Biology, vol. 20, no. 4, pp. 259–279, Apr. 2013.

[5] D. F. DeBlasio and J. D. Kececioglu, “Facet: software for accuracy
estimation of protein multiple sequence alignments (version 1.1),”
http://facet.cs.arizona.edu, 2014.

[6] I. Van Walle, I. Lasters, and L. Wyns, “SABmark: a benchmark
for sequence alignment that covers the entire known fold space,”
Bioinformatics, vol. 21, no. 7, pp. 1267–1268, Mar. 2005.

[7] D. F. DeBlasio, T. J. Wheeler, and J. D. Kececioglu, “Estimating the
accuracy of multiple alignments and its use in parameter advis-
ing,” Proceedings of the 16th Conference on Research in Computational
Molecular Biology (RECOMB), pp. 45–59, 2012.

[8] C. Notredame, L. Holm, and D. G. Higgins, “COFFEE: an objective
function for multiple sequence alignments,” Bioinformatics, vol. 14,
no. 5, pp. 407–422, Jun. 1998.

[9] J. D. Thompson, F. Plewniak, R. Ripp, J.-C. Thierry, and O. Poch,
“Towards a reliable objective function for multiple sequence align-
ments,” Journal of Molecular Biology, vol. 314, no. 4, pp. 937–951,
Dec. 2001.

[10] V. Ahola, T. Aittokallio, M. Vihinen, and E. Uusipaikka, “Model-
based prediction of sequence alignment quality,” Bioinformatics,
vol. 24, no. 19, pp. 2165–2171, Sep. 2008.

[11] J. M. Chang, P. D. Tommaso, and C. Notredame, “TCS: a new mul-
tiple sequence alignment reliability measure to estimate alignment
accuracy and improve phylogenetic tree reconstruction,” Molecular
Biology and Evolution, vol. 31, no. 6, pp. 1625–1637, Apr. 2014.

[12] T. Lassmann and E. L. L. Sonnhammer, “Automatic assessment
of alignment quality,” Nucleic Acids Research, vol. 33, no. 22, pp.
7120–7128, Dec. 2005.

[13] G. Landan and D. Graur, “Heads or tails: a simple reliability check
for multiple sequence alignments,” Molecular Biology and Evolution,
vol. 24, no. 6, pp. 1380–1383, 2007.

[14] O. Penn, E. Privman, G. Landan, D. Graur, and T. Pupko, “An
alignment confidence score capturing robustness to guide tree
uncertainty,” Molecular Biology and Evolution, vol. 27, no. 8, pp.
1759–1767, Jul. 2010.

[15] J. Kim and J. Ma, “PSAR: measuring multiple sequence align-
ment reliability by probabilistic sampling,” Nucleic Acids Research,
vol. 39, no. 15, pp. 6359–6368, Aug. 2011.

[16] A. Bahr, J. D. Thompson, J. C. Thierry, and O. Poch, “BAliBASE
(Benchmark Alignment dataBASE): enhancements for repeats,
transmembrane sequences and circular permutations,” Nucleic
Acids Research, vol. 29, no. 1, pp. 323–326, Jan. 2001.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness. New York: W.H. Freeman and
Company, 1979.

[18] R. C. Edgar, “BENCH,” http://www.drive5.com/bench, 2009.
[19] S. Balaji, S. Sujatha, S. S. C. Kumar, and N. Srinivasan, “PALI:

a database of Phylogeny and ALIgnment of homologous protein
structures,” Nucleic Acids Research, vol. 29, no. 1, pp. 61–65, Jan.
2001.

[20] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices
from protein blocks,” Proceedings of the National Academy of Sci-
ences USA, vol. 89, no. 22, pp. 10 915–10 919, Nov. 1992.

[21] T. Müller, R. Spang, and M. Vingron, “Estimating amino acid
substitution models: a comparison of Dayhoff’s estimator, the
resolvent approach and a maximum likelihood method,” Molecular
Biology and Evolution, vol. 19, no. 1, pp. 8–13, Jan. 2002.

[22] D. T. Jones, “Protein secondary structure prediction based on
position-specific scoring matrices,” Journal of Molecular Biology, vol.
292, no. 2, pp. 195–202, Sep. 1999.

Dan DeBlasio is a PhD candidate in the De-
partment of Computer Science at the Univer-
sity of Arizona. His research is in algorithms
for computational biology, specifically, improv-
ing the quality of multiple sequence alignment
through advising. He received his BS and MS in
Computer Science from the University of Central
Florida in 2007 and 2009, where his thesis work
focused on reducing the memory consumption of
preforming multiple sequence alignment of RNA
guided by known secondary structure. Dan was

a fellow of the NSF IGERT in Comparative Genomics from 2010-2013.

John Kececioglu received the PhD in Com-
puter Science from the University of Arizona
in 1991. He did postdoctoral study at the Uni-
versité de Montréal and the University of Cali-
fornia at Davis, then taught at the University of
Georgia, before joining the University of Arizona
in 2000 where he is an Associate Professor of
Computer Science. His research is in the design,
analysis, and implementation of algorithms for
bioinformatics and computational biology. John
is the recipient of a US National Science Foun-

dation CAREER Award, has served on the Scientific Advisory Board of
the Max Planck Institute for Computer Science, serves on the Editorial
Board of Algorithms for Molecular Biology, and is an Associate Editor of
IEEE/ACM Transactions on Computational Biology and Bioinformatics.

