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A Memory Efficient Method for
Structure-Based RNA Multiple Alignment

Daniel DeBlasio, Jocelyne Bruand, and Shaojie Zhang

Abstract—Structure-based RNA multiple alignment is particularly challenging because covarying mutations make sequence
information alone insufficient. Existing tools for RNA multiple alignment first generate pairwise RNA structure alignments and
then build the multiple alignment using only sequence information. Here we present PMFastR, an algorithm which iteratively
uses a sequence-structure alignment procedure to build a structure-based RNA multiple alignment from one sequence with
known structure and a database of sequences from the same family. PMFastR also has low memory consumption allowing
for the alignment of large sequences such as 16S and 23S rRNA. The algorithm also provides a method to utilize a multi-
core environment. We present results on benchmark data sets from BRAliBase, which shows PMFastR performs comparably
to other state-of-the-art programs. Finally, we regenerate 607 Rfam seed alignments and show that our automated process
creates multiple alignments similar to the manually-curated Rfam seed alignments. Thus, the techniques presented in this article
allow for the generation of multiple alignments using sequence-structure guidance while limiting memory consumption. As a
result, multiple alignments of long RNA sequences, such as 16S and 23S rRNAs, can easily be generated locally on a personal
computer.

Index Terms—RNA multiple alignment, RNA secondary structure, RNA sequence-structure alignment, iterative alignment
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1 INTRODUCTION

Ahigh quality multiple alignment of RNA se-
quences is crucial for RNA homology search [1],

structure analysis [2] and discovery [3], [4]. Even
though methods for multiple alignments of DNA and
protein sequences are well studied [5], [6], [7], [8],
structure-based RNA multiple alignment is still an
open problem.

Aligning two RNA sequences with consideration of
the structural information comes as an extension of
the RNA structure prediction studies [9], [10], [11].
When aligning two RNA sequences, we can consider
three problems and associated methods depending
on whether or not we have the structural informa-
tion for these RNA sequences [12], [13]. Without
considering the pseudo-knots in the RNAs, all these
problems can be solved in polynomial time. First, it
is possible to align two RNA sequences without any
structural information and to predict their common
secondary structure [14]; this is the RNA sequence-
sequence alignment problem. Another possible input
is two RNA sequences with the structural profile or
other structural information for only one of the se-
quences; this is the RNA sequence-structure alignment
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problem. Several methods have been developed for
this problem and are used for finding RNA homologs.
FastR [15] and PFastR [1] use guide trees and dynamic
programming to globally align a sequence or profile
to a given target sequence. CMSEARCH [16] and
RSEARCH [17] use covariance models to supplement
dynamic programming for their alignment procedure.
Finally, the structural information can be given for
both RNA sequences, allowing us to find common
motifs between two RNA structures [13]; this is the
RNA structure-structure alignment problem.

Much work has already been done on the
structure-based RNA multiple alignment problem.
Most of these RNA multiple alignment methods (PM-
multi [18], MARNA [19], Stemloc [20], STRAL [21],
and LARA [12]) use pairwise RNA alignments
(sequence-sequence or structure-structure) for all se-
quences and then combine these alignments into a
multiple alignment using T-Coffee [7] or other pro-
gressive strategies. However, in the case of sequence-
sequence alignment, these methods predict the RNA
structure or pairing probabilities from scratch at the
expense of RNA structure accuracy. For instance,
LARA either takes in the annotated structure or pre-
dicts the structure of the input sequences; it then uses
a connection graph and integer linear programming
to create pairwise alignments. The scores of these pair-
wise alignments is then fed into T-Coffee to generate a
multiple alignment. MARNA approaches the problem
by using a scoring matrix for each pairwise alignment
and focuses on the structure; if the structure is un-
available, MARNA predicts the structure using one of
several known prediction tools. Those pairwise align-
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Fig. 1. Overview of PMFastR. The three major steps are highlighted in the solid square boxes, while the input
and output of the program are represented in dashed boxes. After generation of a seed alignment, the algorithm
progressively aligns the rest of the input data set. Finally, we run the CMBuild refinement program to improve the
unpaired gap regions in the alignment.

ments are then also used as input for T-Coffee. This
approach is limited to the sequence length because of
the running time (O(n2l4) + O(n3l2), where n is the
number of sequences, l is the length). PMmulti uses
base-pairing probability matrices for alignment pro-
cedure. Again the running time is prohibitive, on the
order of O(l4). Stemloc utilizes a Stochastic Context-
Free Grammar (SCFG) and dynamic programming to
both align two sequences and predict their structures
simultaneously. STRAL uses a heuristic to reduce
the sequence-structure alignment problem to a pure
sequence based alignment problem.

On the other hand, RNA structure-structure align-
ment is not feasible on very long RNA sequences,
such as 16S rRNA and 23S rRNA. RNAforester [22]
performs a structure-based RNA multiple alignment
in O(s2n2d2) (where s is the length of the sequence,
n is the number sequences and d represents the
maximum degree of the tree representing the RNA
structure). The trees representing the RNA secondary
structures used in RNAforester are very similar to
the one presented in this paper, but RNAforester
requires that each sequence have a known associ-
ated secondary structure. In contrast, our proposed
method requires only one RNA sequence with known
secondary structure and a database of other unaligned
sequences as input.

The RNA sequence-structure alignment strategy is
also used to build a multiple alignment. Eddy and
Durban [2] accomplish this by using a covariance
model, but their algorithm requires an initial multi-
ple alignment as input. This initial alignment would
need to be hand-curated or generated by some other
alignment method.

Databases of multiple RNA alignments, such as
Rfam [23], maintain very high quality alignments,
which are obtained by integration of multiple sources

and manual curation. We assume that these databases
have the correct alignments and, therefore, can be
used for a baseline comparison as a mean to assess
how well our algorithm is performing. This paper
shows that the proposed algorithm can produce com-
parable results without manually curating the align-
ments.

In this paper, we present the Profile based Mul-
tiple Fast RNA alignment (PMFastR) algorithm. An
overview of the method is presented in Figure 1.
PMFastR constructs a structure-based RNA multiple
alignment from scratch while using a relatively small
amount of memory and can be used for long RNA
sequences such as 16S rRNA or 23S rRNA sequences.
The algorithm consists of three major steps. First, a
sequence-structure alignment of an RNA sequence
from the database to the original structure is gen-
erated; this step outputs an aligned profile of two
sequences with structure information. Second, RNA
sequence from the database is then aligned to the
output profile and obtain a new alignment profile.
This can be repeated iteratively until all of the RNA
sequences of the input database are aligned. Finally,
the CMBuild refinement protocol is run to improve
the unpaired gap regions in the alignment. In the
Methods Section, we present the algorithm itself and
details on all of the major improvements over FastR.
In the Results Section, several benchmarking tests
on PMFastR with other multiple RNA alignment
tools are presented using BRAliBase (version 2.1) [24]
as test data sets, which are extracted from Rfam
database. We also regenerate all Rfam hand-curated
seed alignments (version 8.1) [23] automatically with
comparable results.
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2 METHODS

The method presented here follows the underly-
ing alignment procedure used in FastR [15] and
PFastR [1]. This algorithm utilizes the underlying
structure of an RNA sequence to create a tree and
align a sequence to that tree by a simple traversal.
The sequence-structure alignment problem can then
be solved in O(mn2) time and memory using this
approach.

We are able to improve upon the memory con-
sumption as well as the time complexity by utilizing
banding. Additionally, we make several other im-
provements to the basic algorithm to further reduce
the running time. Finally, we modify the algorithm
to follow a progressive paradigm in order to create
a multiple alignment. In this section, we present the
original tree based alignment method, followed by a
detailed description of each step to expand on the
original ideas.

2.1 The Alignment Procedure

By assuming that no pseudoknot exists in an RNA
structure, we can create a tree of the structure of that
RNA sequence. Let M be the set of all such base pairs.
For each base pair (i, j) ∈ M , there is a unique parent

base pair (i′, j′) such that i′ < i < j < j′, and there
is no base pair (i′′, j′′) such that i′ < i′′ < i or j <

j′′ < j′. Additionally there must be a base pair (ir, jr)
where no such parent exists, this node is the root of
the tree and all other nodes are connected to their
direct parents [25], [26].

Two issues must be resolved in order for the tree
to be easily traversed: (1) the tree must represent the
entire RNA sequence (including the unpaired bases),
and (2) the tree must be binary. To satisfy both of
these conditions we follow the binarization procedure
presented in FastR [15]. All of the nodes in M are
labeled as solid nodes. We introduce a new type of
node, the dotted node, to the tree. First, we add
dotted nodes at any splitting point in the tree, each
solid node that has more than one child will instead
become the parent of a dotted node, this node will
then have two children, if needed one of these will
be another dotted node with two children. To include
all bases in the tree, dotted nodes are added at any
point where an unpaired base should exist. Because
unpaired bases should only exist between stacks in
the sequence (or outside the root pair) they have a
unique location in the tree. We call M ′ the new set of
nodes (both solid and dotted) from the newly formed
tree. Since the nodes in the tree represent at most two
locations in the original sequence, we can then try and
match those two locations to the target sequence. The
entire alignment procedure is shown in Figure 2(a).
For a profile input each node is represented by a
position specific scoring matrix (PSSM). Because |M ′|
is bounded by the size of the input profile, it is easy

to see how this original algorithm is O(mn2) in both
time and space, any location in the search sequence
is considered for a match at any node.

2.2 Banding

Because PMFastR is performing a global alignment,
we can assume that the location of matching bases
between the profile and the target sequence are sim-
ilar. In particular, we assume that it is within some
banding constant of the original location. Once this
assumption has been established, the search space is
limited to these bounds. This allows for a reduction in
running time since we do not examine locations with
a very low likelihood of having a match. The space
consumption is also reduced since we only need to
store the alignment values for the locations within the
banding region.

A banding variable (band) is defined and this value
can be adjusted depending on the type and length of
sequence being examined, as well as the precision of
the result desired. Thus, for any node v in the tree,
the algorithm only needs to examine the locations
in the query where the corresponding base pair or
unpaired base might exist. For example, let v be a
node in the binarized tree as described above where
v represents the base pair at (lv, rv). The algorithm
looks for the corresponding base pair in the query
and only examines the potential pairing sites (i, j)
in the query where lv − band ≤ i ≤ lv + band and
rv − band ≤ j ≤ rv + band.

This banding leads to the assertion that any poten-
tial pairings outside of the bounds are never assigned
a score. Since the banding constant is given at the
beginning of the algorithm, only the space necessary
to store results within the banding bounds needs to
be allocated and stored. If there is a reference to a
location outside those bounds the initialization value
is returned. The running time and space complexity
of this algorithm is then reduced from O(n2 ∗ m) to
O(band2 ∗ m), where n is the length of the target
sequence and m is the number of nodes in M ′ which
are bounded by the length of the profile. Figures
2(b) and 2(c) show the methods used for mapping
into the new bounded array. We can see that these
procedures have a constant running time, thus the
effect on running time is not significant.

Since the sequences to be aligned are from the
same family, we can expect that they are of similar
length. However, in some cases, lengths can vary
significantly within the same family. Additionally, as
the profile grows in height it also grows in width
due to insertions from the new sequences. This is
a problem for banding. Because we only examine a
small portion of the profile, we need to verify this
portion still has potential to give a good alignment.
The most straight-forward adjustment is a change
in the banding parameter. By increasing this value,
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procedure PAln

(* M is the set of base pairs in RNA profile R. M ′ is the augmented set. *)

for all nodes v ∈ M ′,

all intervals (i, j), lv − band ≤ i ≤ lv + band and rv − band ≤ j ≤ rv + band

if v ∈ M

value = max



















mapRetrieve(child(v), i + 1, j − 1) + δ(lv , rv, t[i], t[j]),
mapRetrieve(v, i, j − 1) + γ(′−′, t[j]),
mapRetrieve(v, i + 1, j) + γ(′−′, t[i]),
mapRetrieve(child(v), i + 1, j) + γ(lv , t[i]) + γ(rv ,′ −′),
mapRetrieve(child(v), i, j − 1) + γ(lv ,′ −′) + γ(rv , t[j]),
mapRetrieve(child(v), i, j) + γ(lv ,′ −′) + γ(rv,′ −′),

else if v ∈ M ′ − M , and v has one child

value = max







mapRetrieve(child(v), i, j − 1) + γ(rv, t[j]),
mapRetrieve(child(v), i, j) + γ(rv ,′ −′),
mapRetrieve(v, i, j − 1) + γ(′−′, t[j]),
mapRetrieve(v, i + 1, j) + γ(′−′, t[i]),

else if v ∈ M ′ − M , and v has two children

value = maxi≤k≤j{

mapRetrieve(left child(v), i, k − 1) +

mapRetrieve(right child(v), k, j)

}

end if

mapSet(v, i, j, value)

end for

(a)

procedure mapRetrieve(v, i, j)

(* i and j are the global position in the table assuming that banding is not used. *)

if i & j are within the band of lv and rv

it = i − lv + band

jt = j − rv + band

return A[it, jt, v]

else

return initialization value for (i, j, v)

end if

(b)

procedure mapSet(v, i, j, value)

if i & j are within the band of lv and rv

it = i − lv + band

jt = j − rv + band

A[it, jt, v] = value

end if

(c)

Fig. 2. (a) An algorithm for aligning an RNA profile R with m columns against a database string t of length n.
The query consensus structure M was Binarized to obtain M ′. Each node v in the tree corresponds to a base
pair (lv, rv) ∈ M ′. (b) and (c) The mapping functions that make the transition to a memory-saving banding array.
It is assumed that the array A is of size n ∗ n ∗ m while the new banding array is of size band ∗ band ∗ m.

we increase the probability that the proper alignment
traceback will stay within the allocated area. The
trade-off here is that as this value is increased, the
benefit gained from using banding is lost. In fact,
because of the properties of banding, if the constant is
raised too high, it can actually be detrimental to both
running time and memory bounds.

Another solution is to judge each column for qual-
ity and hide columns that are not beneficial to the
alignment during the procedure. This is achieved by
assigning a quality metric to each column. The quality

score is defined to be the percentage of a column that
has a sequence letter assigned to it. Let us note at this
point that we only hide columns that do not contain
structural information. We then identify all columns
that have a quality score below some threshold and
remove them from the profile. After running the align-
ment procedure, we add the columns back into the
profile so we do not lose this information. The thresh-
old can be adjusted to make the profile as similar in
length to the query as desired. In this manner, we
can always overcome the expansion dilemma using a
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Fig. 3. A graphical representation for the space con-
sumption addressed by the algorithms in Figure 2(b)
and Figure 2(c). The boxed areas represent the allo-
cated memory sections for the algorithm. Using PM-
FastR, the white space is not allocated, but virtualized
by the functions mentioned previously. Any reference
to the stripped area remains the same.

combination of an adjustment of the banding width
and the quality threshold. We see this calculation in
Equation (1) where k is the number of sequences and
j is the column in question. Here ′−′ represents the
gap or delete character.

quality score(j) =

k
∑

i=1

(cij 6=′ −′)

k
(1)

2.3 Multithread Design

The tree structure representation allows for another
key observation: two sibling nodes are independent
in calculation. We can see that while each node de-
pends on the fact that the child node calculations
be completed, the siblings (if more than one) do not
depend on each other to fill in their own dynamic
programming table. Using this fact, along with the
widespread availability of multi-core machines, we
can greatly improve the wall time of the algorithm.
By running each branch of the tree on a separate
thread, we can utilize all of the processing power
simultaneously.

Only a few simple changes are needed to imple-
ment the multithreaded design. The major change is
the separation of the iterative loop of recursing the
tree into a function that can be called on any node.
This is the basis of any thread that is spawned from
the original instantiation. Within this new function,
we must first make sure the calculations for the
children are completed. This is where the recursion
comes in, if there are two children of the current node,
run them independently then wait for them both to
complete before doing the parent node computation.
Thus, the process begins on the root and recursively
spawns threads for its children in a depth-first man-
ner. Conversely, because all of the threads are paused

until their children are complete the computation is
done in a reverse breath-first manner; meaning the
leafs are computed first, then the parent of the leafs
and so on.

The running time of the algorithm (theoretically) is
improved w-fold (where w is the maximum width of
the tree). In most cases the program will be running
on a single local machine and the thread handling
will be done by the processor and operating system.
However, we added one more feature that is needed
for shared server environments. All of the computa-
tionally intensive code is done at the end of the thread
call (the Running Block). If we are sharing a server in
an uncontrolled environment, we may not want to
have w threads all in the Running Block at once. We
can then put this block for each node into a dispatch
queue. When any thread is ready to enter Running
Block, it is added to the queue. This queue is controlled
by a dispatcher which releases the thread into this
block, only letting a specific number of threads be in
that state at any given time. This allows the user to
control how many threads are running. While all of
the threads will be spawned, the one that are waiting
either on child threads or in the queue will be idle
and not consuming resources.

2.4 Multiple Alignment

We expand the procedure to create a multiple align-
ment that is more accurate than those given by se-
quence only alignment tools. Additionally, we know
that experimentally determining the structure of RNA
in a lab environment is expensive and time con-
suming. Thus, we assume that we will only have a
small number of structured sequences. In particular,
we build a multiple alignment using structure infor-
mation for only one sequence. We implemented a
single pass progressive multiple alignment using the
procedure presented above at the core. Each sequence
in the input set was examined only once and then
appended to a growing intermediate alignment.

The input is one sequence with experimentally
determined structure and a database of sequences
that are known to be in the same family but do not
have attached annotated structure. After processing
each new sequence chosen from the database we will
obtain intermediate profile which contains both the
structure and sequence information for the alignment,
but may have large high-gap regions. This profile is
then used as the input to the next step. Thus, the
first step is to create the first profile by selecting one
sequence from the database and aligning it to the
input structured sequence. Once all sequences have
been aligned, we then still only have an intermediate
profile, though it now contains all of the sequences
from the database. We then run a refinement step
to clean the profile for output and analysis by other
programs.
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procedure processNode(v)

(* v is the current node to be processed. *)

if v has one or more children

spawn thread on processNode(left child(v))

end if

if v has two children

spawn thread on processNode(right child(v))

end if

wait for all (if any) child threads to complete

signal that this node is ready for processing

wait until resources are freed to process

execute PAln(v)

signal that the next node can be processed

Fig. 4. The multithreaded design elements of the improved algorithm. The number of threads spawned is the
same as the number of nodes in the guide tree, but because of hierarchy, there is a limit on the number of running
processes equal to the width of the tree.

Note here that there is a distinction between the
single sequence-structure and the sequence-profile
alignment procedures. While the underlying method
remains exactly the same, we introduce a new ele-
ment in the profile alignment, the Position Specific
Scoring Matrix (PSSM), which is capable of storing
the alignment column scoring parameters. Variation
within a column of a profile can provide a lot of
information when doing an alignment, thus aligning
to a consensus sequence would defeat the purpose
of building the profile to begin with. The PSSM is
a manipulation of the scoring function that is used
in the single sequence alignment. We are not simply
checking two bases, we are comparing a base to a
column. For each column, we have a probability dis-
tribution based on the contents of the column. We then
assign a score according to this distribution. The initial
score is based on the RIBOSUM nucleotide scoring
matrix (NSM) as provided by Klein and Eddy [17] as
used in PFastR [1]. Each entry in the scoring matrix
for a node j and paired bases a and b is calculated as
follows:

PSSM [j][a][b] =
∑

c,d

ncd ∗ NSM [a][b][c][d]

k
(2)

Here, a and b are the bases in the search sequence,
c and d are all possible bases in the left and right
columns of the profile, ncd is the count of the number
of columns in the profile that contains c in the left
column and d in the right, and k is the total number of
sequences. The NSM matrix provides a score for the
replacement of base pair (a, b) with (c, d). Similarly,
entries in the scoring matrix for a node representing
an unpaired based at node j are calculated as:

PSSM [j][a] =
∑

c

nc ∗ NSM [a][c]

k
(3)

We see that this is only involving a single search base.
Because the profile is constructed in a single pass,

the order in which the sequences are added becomes
very important. While this can be done in an ad-hoc
manner and adequate results are achieved, we found
that having some guidance greatly improved the out-
put quality. Hence, we retrieve the alignment of the
sequences in ClustalW [27] and use the ClustalW
guide tree to direct the order of the input for PMFastR.

3 RESULTS AND DISCUSSION

We evaluate the performance of PMFastR based on
memory consumption, running time and quality of
the alignments. First, we compare the memory con-
sumption of PMFastR with that of its predecessor
FastR. Then, we construct two 16s rRNA multiple
alignments based on sequences from CRW and Green-
genes. Later, we look at the improvement in the
running time of the multi-threaded version of PM-
FastR. We also compare the performance of PMFastR
to five other multiple alignment tools using a stan-
dardized dataset [12]. Finally, we generate multiple
alignments for every RNA families from the Rfam 8.1
database [23] and compare them with the manually-
curated seed alignments.

3.1 Memory Consumption

One of the goals of this project is to align large
RNA sequences. In particular, we aim to align 16S
rRNA and 23S rRNA using structural information.
Given that the problem is O(n3) in both memory and
time without banding, the first necessary develop-
ment is to reduce the memory consumption to allow
the algorithm to run on personal computers. Our
new procedure theoretically reduces the memory con-
sumption to O(n). Here, we present empirical test to
show that the memory consumption is indeed within
those boundaries (see Figure 6). We tested our new
procedure against FastR. The experiment consists of
choosing a set of pairings of sequences from any given



DEBLASIO et al.: A MEMORY EFFICIENT METHOD FOR STRUCTURE-BASED RNA MULTIPLE ALIGNMENT 7

procedure multipleAlignment

(* Here S is an array of sequence file names without extension. *)

run ClustalW to get the alignment tree for the non-structured sequences

order the input sequences {S1, S2, S3, ...Sk} as ordered above

run sequence-structure alignment on S0 with structure and S1 without

output the alignment to a profile file p.

for Si as the rest of the sequences S2 to Sk

compact p remove unpaired columns with less than cut off sequences present

run the profile-sequence alignment on p and Si

reinsert the unpaired columns removed above

output this alignment to p

end for

execute CMBuild –refine on p and output the multiple alignment with structure annotation. (optional)

Fig. 5. The multiple alignment procedure. The progressive alignment procedure only examines one sequence
from the input set at a time. As sequences are aligned, they are appended to the input profile and this becomes
the input to the next iteration of the single alignment procedure. The process is concluded when the profile
contains all of the sequences input.

set, then aligning them using the procedure presented
here and with FastR. While our goal set is 16S rRNA,
we could not run the benchmark algorithm on such
a large sequence due to hardware limitations. Thus,
we use a dataset comprising of tRNA, 5S rRNA, and
cobalamine since both algorithms could run on this
data. Results of these datesets are shown in Figure 6.
The trend is clearly seen in this figure. The memory
consumption was normalized by the length of the
profile (n). We can see that the trend follows.

3.2 16S rRNA Alignment

As a proof of concept that PMFastR can be used to
create quality alignments for long RNA sequences, we
generated a large multiple alignment of 16S rRNA.
Specifically, we constructed an alignment of the 567
16S rRNA from CRW database [28]. The average
pairwise sequence identity was 48%. The alignment
took ∼40 hours with a single process and the average
maximum memory consumption per alignment of
3.63 Gb. This is the first multiple alignment of 16S
RNA sequences which takes into account secondary
structure information. This alignment is available on
our supplementary data website.

As an additional test, we reassembled the Green-
Genes core set [29], [30], which comprises of 4290 16S
rRNA sequences. We used the E. Coli sequences with
structure as the alignment seed. We then visualized
the new alignment using both stack coloring and
base coloring. The new alignment, as well as the
visualizations, are available in the supplemental data
on our website.

3.3 Multithreading

Because of the high constant on the running-time,
we made algorithmic improvements by splitting the
computation of sibling nodes on the tree into separate

threads. The theoretical running time of the algorithm
remains O(nb2); however, parallelization of a good
portion of the algorithm allowed us to greatly re-
duce the wall time. By allowing just two concurrent
threads, we can improve the running time by 78% for
a subset of the CRW 16S rRNA dataset. The running
time is further reduced when more concurrent threads
are allowed. A ceiling is reached when the number of
allowed processes is equal to the maximum width of
the tree. Thus, when the structure of the RNA is more
complex, we can see more improvements on running
time by increasing the number of processes.

We can see that this is true by looking at the result in
Table 1. For this set, we do not see much improvement
when allowing more than 8 processes. It is important
to note that this is the observed boundary and that is
can be influenced by hardware. Specifically, the nodes
in our cluster only had 8 processors, the memory
latency could have had an impact on the running time
boundary.

3.4 BRAliBase Data Sets

In order to assess the performance of our pro-
gram, we show comparative results with other pro-
grams. We use the benchmark set BRAliBase 2.1
[31], which is based on seed alignments from the
Rfam 7.0 database. We compare our program to four
other structure-based RNA alignment tools (LARA,
FOLDALIGNM [32], MARNA, and STRAL) and
one purely sequence-based multiple alignment tool
(MAFFT [33]). The results for LARA, FOLDALIGNM,
MAFFT, MARNA, and STRAL were obtained from the
supplementary data of Bauer et al. [12]. The full bench-
marking results are available on the supplementary
website.

In order to compare the alignments generated by
PMFastR with the alignments generated by these
other tools, we use four measures: Compalign, Sum-
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Fig. 6. Memory consumption for aligning the tRNA (blue), 5S rRNA (red) and cobalamine (green) sequences.
The x-axis is the length of the search sequence, and the y-axis shows the average memory consumption for all
tests with that length. The values were normalized using the profile length to show a cleaner representation of
the information. The top line (circles) shows the data for the FastR algorithm, while the bottom line (squares)
shows the PMFastR result.

TABLE 1
Multithreaded restriction results

Number of Total Time Average Time Speedup
Processes Per Alignment

1 7:10:46 4:18 1
2 4:10:38 2:25 1.78
4 3:24:00 2:02 2.11
8 2:59:13 1:48 2.40
16 2:57:14 1:46 2.43
32 2:56:51 1:46 2.44

of-Pairs Score (SPS), Structure Conservation Index
(SCI) and Structure Conservation Rate (SCR). Sum-
of-Pairs Score (SPS) is the fraction of pairs aligned
in both the reference alignments and the predicted
alignments and has been used in many alignment
benchmarks [24], [34]. It is similar to Compalign
which has been used in LARA’s benchmarking [12].
For SPS and Compalign, a value of 1 represents the
reference is the same as the test alignment. On the
other hand, Structure Conservation Rate (SCR) calcu-
lates the fraction of the conserved base pairs in the
alignments. It resembles the Structure Conservation
Index (SCI) [24], [4] with the differences that SCR re-

wards the compensatory mutations and uses reference
structure from the benchmarking alignment while SCI
first uses RNAalifold [35] to predict the consensus
structures and then calculates the structural conser-
vation index with compensatory mutations. Since
we already have the structural information of the
benchmarking data set, SCR is a better way to check
the paired regions alignments. Since other programs
(LARA, FOLDALIGNM, MARNA, and STRAL) do
not output the structural information, we have to
use RNAalifold to predict the consensus structure for
SCR.

The BRAliBase test set is divided into six groups.
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Fig. 7. Compalign benchmarking. Each alignment was run though Compalign, this score is shown on the y-axis.
This is a measure of the similarity of an input alignment with the reference alignment. The x-axis shows the
average pairwise sequence identity (APSI) for each dataset. The data used were sets of (a)2, (b)3, (c)5, (d)7,
(e)10, and (f)15 sequences per dataset.

Fig. 8. Structure Conservation Index (SCI) benchmarking. SCI score is obtained for each alignment, which is
shown on the y-axis. This is a measure of the rate at which the pairs that are annotated as structural follow
the canonical bases using RNAlifold. The x-axis shows the average pairwise sequence identity (APSI) for each
dataset. The data used were sets of (a)2, (b)3, (c)5, (d)7, (e)10, and (f)15 sequences per dataset.
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Fig. 9. Structure Conservation Rate (SCR) benchmarking. SCR score is obtained for each alignment, which
is shown on the y-axis. This is a measure of the rate at which the pairs that are annotated as structural follow
the canonical bases using the algorithmic structure (when available). The x-axis shows the average pairwise
sequence identity (APSI) for each dataset. The data used were sets of (a)2, (b)3, (c)5, (d)7, (e)10, and (f)15
sequences per dataset.

Fig. 10. Sum of Pairs Score (SPS) benchmarking. SPS is obtained for each alignment, which is shown on the y-
axis. This is a measure of the alignments similarity to the goal alignment. The x-axis shows the average pairwise
sequence identity (APSI) for each dataset. The data used were sets of (a)2, (b)3, (c)5, (d)7, (e)10, and (f)15
sequences per dataset.
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Each group contains a number of sets of sequences
from the same family. These six groups have a differ-
ent number of sequences per set, ranging form 2 to 15.
Within each set the sequence identity is also identified.
We choose sequence such as to have a variation in
sequence identity ranging from 39% to 50%. We ignore
test sets with sequence identity above 50% since we
want to test in the range where structural information
is integral to the RNA alignment. Results are shown
in Figures 7, 8, 9 and 10. Additionally, we show
the results for other multiple alignment programs on
the same sets. We can see that in all of the tests
we performed, PMFastR is comparable or better than
LARA and the other tested programs. In the few test
cases where LARA does have a better score on the
high sequence identity sets, PMFastR has a better
score at the low end, which is where our study was
focused.

3.5 Rfam Families

Rfam is a well-known database of families of RNA
sequences. The data comes from multiple locations
and in most cases the alignments are hand-curated or
seeded with a hand-curated alignment. The repository
consists of 607 families of RNA, each with a seed and
full alignment. We use version 8.1 as a benchmark
alignment. We retrieve all families from the database
and remove one sequence from the family that was
most consistent with the structure. Each sequence in
the multiple alignment is then separated from the
group with gaps removed, then fed into PMFastR
individually without the annotated structure. We then
obtain a new multiple alignment from the same data
set as in the benchmark. We can then examine the
alignment to assess its quality. We use the same anal-
ysis tools mentioned in the BRAliBase comparisons.
It can be seen from this analysis that PMFastR is able
to regenerate very similar alignment to those created
by hand. The details of these comparisons and the
entire regenerated Rfam 8.1 database are available in
the supplemental data.

4 CONCLUSIONS

We presented an algorithm, PMFastR, which aligns
RNA sequences using both sequence and structure in-
formation. The algorithm only requires one sequence
to have structure information and is able to align
all other input sequences without human interaction.
Because we are able to drastically reduce the memory
consumption as compared to previous work, our al-
gorithm is able to run on very long RNA sequences,
such as 16S and 23S rRNA.

We propose three major ideas which improve the
performance of PMFastR and which can be ap-
plied to other work. Banding allows a significant
reduction in both run time and space consump-
tion of our alignment algorithm. In fact, we are

Fig. 11. Benchmarking of Rfam seed alignments.
Comparison of alignments generated by PMFastR on
RFam families with manually-curated seed alignments
by two measures, SPS (a) and SCR (b). Each family
was stripped of the structure except one sequence
which was used as the seed, then reconstructed using
PMFastR.

able to reduce the space consumption from cubic
to linear when comparing to the predecessor, FastR.
Moreover, reordering the inner loops of this algo-
rithm allows us to run it in a multi-threaded man-
ner, thus drastically reducing the wall time. These
modifications do not alter the quality of the algo-
rithm’s results. In fact, PMFastR with CMBuild re-
finement performs comparably to other state-of-the-
art RNA multiple alignment tools and creates com-
parable alignments to the hand-curated ones in the
Rfam database. All results, as well as the application
source code, can be found on the project web page
at http://genome.ucf.edu/PMFastR. While PMFastR
performs well for the examples shown in this paper,
there seems to be an implicit limit on the number of
sequences that can be alignment at a high quality. This
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is most likely due to the single pass progressive nature
of the program.
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