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Abstract. Multiple RNA structure alignment is particularly challeng-
ing because covarying mutations make sequence information alone insuf-
ficient. Many existing tools for multiple RNA alignments first generate
pairwise RNA structure alignments and then build the multiple align-
ment using only the sequence information. Here we present PMFastR,
an algorithm which iteratively uses a sequence-structure alignment pro-
cedure to build a multiple RNA structure alignment. PMFastR has low
memory consumption allowing for the alignment of large sequences such
as 16S and 23S rRNA. The algorithm also provides a method to utilize a
multi-core environment. Finally, we present results on benchmark data
sets from BRAliBase, which shows PMFastR outperforms other state-of-
the-art programs. Furthermore, we regenerate 607 Rfam seed alignments
and show that our automated process creates similar multiple alignments
to the manually-curated Rfam seed alignments.

Key words: multiple RNA alignment, RNA sequence-structure align-
ment, iterative alignment

1 Introduction

A high quality multiple alignment of RNA sequences is crucial for RNA homology
search [?], structure analysis [?] and discovery [?,?]. Even though methods for
multiple alignments of DNA and protein sequences are well studied [?,7,?,7],
multiple RNA structure alignment is still an open problem.

The problem of aligning two RNA sequences with consideration of the struc-
tural information comes as an extension of the RNA structure prediction stud-
ies [?,7,?]. When aligning two RNA sequences, we can consider three problems
and their associated methods depending on the availability of the structural in-
formation for these RNA sequences [?,?]. Without considering the pseudo-knots
in the RNAs, all these problems can be solved in polynomial time. First, it is
possible to align two RNA sequences without any structural information and to
predict their common secondary structure [?]; this is the RNA sequence-sequence
alignment problem. Another potential input is a structural profile or other struc-
tural information for one of the sequences but not for the second one; this is the
sequence-structure alignment problem. Several methods have been developed for
this problem and are used for finding RNA homologs. FastR [?] and PFastR [?]



2 Daniel DeBlasio, Jocelyne Bruand, Shaojie Zhang

use a guided trees and dynamic programming to a globally align a sequence
or profile to a given target sequence. CMSEARCH [?] and RSEARCH [?] use
covariance models to supplement dynamic programming for their alignment pro-
cedure. Finally, the structural information can be given for both RNA sequences,
allowing us to find common motifs between two RNA structures [?]; this is the
RNA structure-structure alignment problem.

Much work has already been done on the multiple RNA structure align-
ment problem. Most of these RNA multiple alignment methods (PMmulti [?],
MARNA [?], Stemloc [?], STRAL [?], and LARA [?]) use pairwise RNA align-
ment (sequence-sequence or structure-structure) for all sequences and then com-
bine these alignments into a multiple alignment using T-Coffee [?] or other pro-
gressive strategies. For instance, LARA can take in the structure or predict the
structure of the input sequences. The program then uses a connection graph and
integer linear programming to create pairwise alignments. The score of these
pairwise alignments are then fed into T-Coffee to generate a multiple alignment.
However, in the case of sequence-sequence alignment, these methods predict the
RNA structure or pairing probabilities from scratch at the expense of RNA struc-
ture accuracy. On the other hand, structure-structure alignment is not feasible
on very long RNA sequences, such as 16S rRNA and 23S rRNA. Here, we use the
RNA sequence-structure alignment strategy to build a multiple alignment. Eddy
and Durban [?] have used this strategy in the past by using a covariance model
but their algorithm requires an initial multiple alignment as input. In contrast,
the algorithm presented here requires only one sequence with structure and a
database of other unaligned sequences as input.

Databases of multiple RNA alignments such as Rfam [?] maintain very high
quality alignments which are obtained by integration of multiple sources and
manual curation. We use these databases for baseline comparison as a mean to
assay how well our algorithm is performing. We show in this paper that the
proposed algorithm can produce comparable results without manually curation
of the alignments.

In this paper, we present the Profile based Multiple Fast RNA Alignment
(PMFastR) algorithm. An overview of this program is presented in Figure ?7.
PMFastR does a multiple structure-based alignment from scratch while using a
relatively small amount of memory and can be used to make a multiple structure
alignment of long RNA sequences such as 16S rRNA or 23S rRNA sequences.
The input is one sequence, with structure information, and a group of sequences
without such information. Our algorithm consists of three major steps. The first
step is a structure-sequence alignment of an RNA sequence from the database
with the original structure. This second step outputs an aligned profile of two
sequences with structure information. We can then align the next element from
the database to the output profile and obtain a new alignment profile. This can
be repeated iteratively until all of the elements of the input dataset are aligned.
Finally, we run the CMBuild refinement program to improve the unpaired gap
regions in the alignment. In the Methods section, we present the algorithm itself
and details on all of the major improvements over FastR. In the Results sec-
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Fig. 1. Overview of PMFastR. The three major steps are highlighted in the solid square
boxes, while the input and output of the program are represented in dashed boxes. After
generation of a seed alignment, the algorithm progressively aligns the rest of the input
data set. Finally, we run the CMBuild refinement program to improve the unpaired
gap regions in the alignment.

tion, we run several benchmarking tests on PMFastR with other multiple RNA
alignment tools using BRAliBase (version 2.1) [?] as test data sets, which are
extracted from Rfam database. We also regenerate all Rfam hand-curated seed
alignments (version 8.1) [?] automatically with comparable results.

2 Methods

PMFastR is based on the methods used in FastR [?] and PFastR [?] align-
ment procedures, which were designed for RNA sequence-structure alignment.
This section first briefly describes the sequence-structure alignment algorithm
itself, then the improvements made upon it. These improvements are banding,
multithreading, and multiple alignment. By using banding, the algorithm has a
reduced running time and space consumption by several orders of magnitude.
Multithreading allows the algorithm to utilize multiple cores when available to
further improve wall time. Finally, by using a progressive profile alignment, the
algorithm is able to produce multiple sequence alignments.

2.1 The Alignment Procedure

We make the assumption that all base-pairs are non-crossing, and let M be the
set of all such base-pairs. Thus, for each base-pair (i,j) € M, there is a unique
parent base pair (i, j') such that i’ < i < j < j/, and there is no base-pair (i, j")
such that ¢ < i < i or 7/ < j” < j. The alignment can be done by recursing
on a tree which is representing the RNA profile with the secondary structural
information. Since this tree can have high degree and not all columns of the
profile participate in it, we binarize it using the procedure given in FastR [?].
The number of nodes in this tree is O(m), where m is the number of columns
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in the profile. Figure ?7(a) describes a dynamic programming algorithm for
aligning a sequence to an RNA profile. The RNA profile is then modeled as a
tree as described above. Each node v in the tree either corresponds to a base
pair (l,,r,) € M of the profile, an unpaired base of the profile (and has its own
PSSM), or a branching point in a pair of parallel loops. The alignment of the
sequence to the RNA profile is done by recursing on the tree representing the
input RNA profile.

2.2 Banding

Because PMFastR is performing a global alignment, we can assume that the
location of matching bases between the profile and the target sequence are sim-
ilar. In particular, we assume that it is within some banding constant of the
original location. Once this assumption has been established, the search space
is limited to these bounds. This allows for a reduction in running time since we
do not examine locations with a very low likelihood of matching. The memory
consumption is also reduced since we only need to store the alignment values for
the locations within the banding region. A banding variable (band) is defined
and this value can be adjusted depending on the type and length of sequence
being examined, as well as the precision of the result desired. Thus, for any node
v in the tree, the algorithm only needs to examine the locations in the query
where the corresponding base-pair or unpaired base might exist. For example,
let v be a node in the binarized tree as described above where v represents the
base-pair at (I,,r,). The algorithm looks for the corresponding base-pair in the
query and only examines the potential pairing sites (4,j) in the query where
ly —band <1 <, + band and r, — band < j < r, + band.

This banding entails that any potential pairings outside of the bounds are
never assigned a score. Since the banding constant is given at the beginning of the
algorithm, only the space necessary to store results within the banding bounds
needs to be allocated and stored. If there is a reference to a location outside
those bounds the initialization value is returned. The running time and space
complexity of this algorithm is then reduced from ~ O(n?*m) to ~ O(band?*m),
where n is the length of the target sequence and m is the number of nodes in
M’ which are bounded by the length of the profile. Figures ?? and ?? show the
methods used for mapping into the new bounded array. We can see that these
procedures incur only a small amount of overhead, thus the effect on running
time is not significant.

A problem arises when we work with sequences that are not of similar length.
To overcome this we can make adjustments to the analysis parameters to allow
for these alignments to still be computed. The first solution is to adjust the
banding parameter to search a larger space when the difference in size is high.
In particular, the banding value should always be more than one and a half
times the difference in length. Additionally, any columns in the profile that do
not meet a certain quality criteria (percentage of sequences represented) are
removed before alignment. They are added back when the profile is output, by
adjusting the quality criteria we can also effect the length of the profile used for
alignment.
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procedure PAln
(*M is the set of base-pairs in RNA profile R. M’ is the augmented set. *)
for all nodes v € M’
all intervals (i, §), ly—band < i < ly+band and r,—band < j < ry,+band
ifveM
mapRetrieve(child(v),i + 1,5 — 1) + 6(lv, 7o, t[d], t[4]),
mapRetrieve(v,i,j — 1) + (', t[5]),
mapRetrieve(v,i+ 1,7) +~v('—', t[i]),
value = max mapRetrieveEchild(v),z')+ 1,(]') + 'y[(]l)u, tli]) + v(r», =),
mapRetrieve(child(v),i,5 — 1) + y(lv,” =") + v(rv, t[1]),
mapRetrieve(child(v),,5) +v(l,” =) +v(rs, =),
else if v € M’ — M, and v has one child
mapRetrieve(child(v),i,j — 1) + v(rv, t[4]),
mapRetrieve(child(v), i, 7) + v(r»,” =),
mapRetrieve(v,i,j — 1) +~v('=', t[§]),
mapRetrieve(v,i + 1,7) +v('—', t[i]),
else if v € M’ — M, and v has two children
value = max;<p<;{
mapRetrieve(left_child(v), ¢,k — 1) +
mapRetrieve(right_child(v), k, j)

value = max

}
end if

mapSet(v,1, j, value)

end for

(a)

procedure mapRetrieve(v, i, j)
(*i and j are the global position
in the table assuming that banding is not used. *)
if i & j are within the band of [, and 7,
it =1 — l, + band
jt =j — 1y + band
return Ay, ji, v]
else
return initialization value for (2, j, v)

end if
(b)

procedure mapSet (v, 1, j, value)

if i & j are within the band of I, and r,
it =1 — ly, + band
Jt =J — 1y + band
Alit, je,v] = value

end if

(c)

Fig.2. (a) An algorithm for aligning an RNA profile R with m columns against a
database string t of length n. The query consensus structure M was Binarized to
obtain M’. Each node v in the tree corresponds to a base-pair (I,,7,) € M’. (b) and
(¢) The mapping functions that make the transition to a memory-saving banding array.
It is assumed that the array A is of size n *x n * m while the new banding array is of

size band * band * m.
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procedure processNode(v)
(*v is the current node to be processed. *)
if v has one or more children

spawn thread on processNode(left_child(v))
end if
if v has two children

spawn thread on processNode(right_child(v))
end if
wazt for all (if any) child threads to complete
signal that this node is ready for processing
wait until resources are freed to process
execute PAln(v)
signal that the next node can be processed

Fig. 3. The multithreaded design elements of the improved algorithm. Because the
threads are queued, we can control the amount of simultaneous computation.

2.3 Multithread Design

To improve the feasibility on large sequences, parallelization is used to improve
the wall time of PMFastR. The intuition comes from the fact that, at any given
time, only one node is processed from the tree. Each node only depends on
its two children, which in turn depend only on their children, and so on. This
means that the two children do not depend on each other and can be processed
simultaneously and independently.

By altering the procedure in Figure 77 to take the node v as input, we can run
each node independently. Another procedure is used to manage the threading:
given a node, it runs the alignment on its two children (if any exist), then runs
the alignment on the input node. If each of the children is spawned as a new
thread, then this can be carried out by the processing environment in parallel.

This improvement allows the majority of the processing time to be run in par-
allel. Figure 77 shows the node processing procedure. A signal and wait queue
is used to have processes wait for resources allocated. This allows a restriction
on the amount of processor being used in a shared environment by giving control
to the user of how many active process threads are allowed to be in the ”running
state” at any given point.

2.4 Multiple Alignment

We implemented a single pass progressive profile multiple alignment. The algo-
rithm first aligns one input sequence with structure and the rest of the given
sequences without structure. Note that we can also give a profile rather than a
single sequence. The first step involves running the profile alignment algorithm
described above on the input profile and a single sequence from the set, which
outputs an alignment between the sequence and the profile. We then use this
alignment to create a new profile composed of the original profile (with addi-
tional columns for the gaps inserted in the alignment) followed by the aligned
(gapped) sequence.



PMFastR: A New Approach to Multiple RNA Structure Alignment 7

Since the profile is constructed in a single pass, the order in which the se-
quences are added becomes very important. While this can be done in an ad hoc
manner and adequate results are achieved, we found that having some guidance
greatly improved the output quality. Hence, we retrieve the alignment of the se-
quences from ClustalW [?] and use the ClustalW guided tree to direct the order
of the input for PMFastR.

Figure 77 shows the complete alignment procedure. This procedure assumes
that the input is a single sequence with structure and a set of sequences without
structure. Note the differences between the sequence-structure alignment and the
profile-sequence alignment; a PSSM is used to help the alignment in the profile
alignment, whereas this step is excluded from the sequence-structure alignment.
If the input is a profile instead of a single sequence, the third and fourth lines
of the algorithm are be skipped. Finally, we also use the refinement option of
CMBuild [?] to refine the reinserted unpaired columns.

procedure multipleAlignment
(*Here S is an array of sequence file names without extension. *)
run ClustalW to get the alignment tree for the non-structured sequences
order the input sequences {Si, Sz, Ss,...Sk } as ordered above
run sequence-structure alignment on Sy with structure and S; without
output the alignment to a profile file p.
for S; as the rest of the sequences Sz to Sy
compact p remove unpaired columns with less than cut_of f sequences
present
run the profile-sequence alignment on p and S;
reinsert the unpaired columns removed above
output this alignment to p
end for
execute CMBuild —refine on p and output the multiple alignment with structure
annotation.

Fig. 4. The multiple alignment procedure. The profile is built progressively using the
structure from a seed sequence. All subsequent sequences are then aligned to this
profile.

3 Experimental Results

We evaluated the performance of PMFastR based on running time, quality of
the alignments and memory consumption. We first looked at the improvement
in the running time of the multi-threaded version of PMFastR in function of
the number of simultaneous processes. We then compared the performance of
PMFastR to five other multiple alignment tools [?]. We also generated multiple
alignments for every RNA family from the Rfam 8.1 database [?] and evaluated
their quality by comparing them to that of the manually-curated seed align-
ments. Furthermore, we assessed the improvements in memory consumption of
the PMFastR in contrast to that of its predecessor FastR; these results are shown
in the supplementary data.
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3.1 Multithreading

Multithreading can be used to improve the running time of PMFastR. We tested
the improvement in performance from multithreading by running our algorithm
on 100 alignments on a multi-core system while varying the number of active
threads. In Table 1, we show the total wall time needed to complete the jobs
on four nodes of a high performance cluster with eight processors per node. The
speedup was calculated as the original runtime over the improved runtime. It can
be seen that for more than eight processes, the performance increase is minimal.
This is due to the dominance of communication overhead as the load on each
thread diminishes.

Table 1. Multithreaded restriction results

Number of||Total Time|Average Time [Speedup
Processes Per Alignment

1 7:10:46 4:18 1

2 4:10:38 2:25 1.78

4 3:24:00 2:02 2.11

8 2:59:13 1:48 2.40

16 2:57:14 1:46 2.43

32 2:56:51 1:46 2.44

3.2 Alignments on BRAIliBase Data Sets and Rfam Families

We chose the widely used benchmark set BRAliBase 2.1 [?], which is based
on seed alignments from the Rfam 7.0 database, as our test set. We com-
pared PMFasR to four other structure-based RNA alignment tools (LARA,
FOLDALIGNM [?], MARNA, and STRAL) and one purely sequence-based mul-
tiple alignment tool (MAFFT [?]).

In order to compare the alignments generated by PMFastR with the align-
ments generated by these other tools, we used four measures: Compalign, Sum-
of-Pairs Score (SPS), Structure Conservation Index (SCI) and Structure Con-
servation Rate (SCR). Sum-of-Pairs Score (SPS) is the fraction of pairs aligned
in both the reference alignments and the predicted alignments and has been
used in many alignment benchmarks [?,?]. It is similar to Compalign which has
been used in LARA’s benchmarking [?]. For SPS and Compalign, a value of 1
is achieved when the reference alignment is the same as the test alignment. On
the other hand, Structure Conservation Rate (SCR) calculates the fraction of
the conserved base pairs in the alignments. It resembles the Structure Conserva-
tion Index (SCI) [?,?] with the differences that SCR rewards the compensatory
mutations and uses reference structure from the benchmarking alignment, while
SCI first uses RNAalifold [?] to predict the consensus structures and then cal-
culates the structural conservation index with compensatory mutations. Since
we already have the structural information of the benchmarking data set, SCR
is a better way to check the paired regions alignments. Since other programs
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Fig. 5. Compalign Benchmarking. Each alignment was run though Compalign, this
score is shown on the y-axis. The x-axis shows the average pairwise sequence identity
(APSI) for each dataset. The data used were sets of (a)2, (b)3, (¢)5, (d)7, ()10, and
(f)15 sequences per dataset.

(LARA, FOLDALIGNM, MARNA, and STRAL) do not output the structural
information, we have to use RNAalifold to predict the consensus structure for
SCR.

To remain consistent with Bauer et al. [?], Figure ?? and Figure ?? show
Compalign and SCI results for benchmarking data set. We can see that PM-
FastR with CMBuild refinement outperforms the other programs in these tests.
The results for LARA, FOLDALIGNM, MAFFT, MARNA, and STRAL were
obtained from the supplementary data of Bauer et al. [?]. Due to space restric-
tions, the full benchmarking results, including the SPS and SCR test results, are
available on the supplementary website.

To further test our program, we use PMFastR with CMBuild to recreate
all seed alignments from Rfam 8.1 database starting from only one sequence
with its annotated structure. There are 607 families in the Rfam database. The
detailed alignment results of all RFam families are available in the supplementary
data. Figure 77 shows that alignments predicted by PMFastR with CMBuild are
comparable with the manually curated seed alignments from the Rfam database.
Moreover, we generated a multiple structure alignment for the 567 16S rRNA
from CRW database [?] with average pairwise sequence identity of 48%. The
alignment took ~40 hours, and had an average maximum memory consumption
per alignment of 3.63 Gb. To our knowledge, this is the first automated multiple
alignment of 165 RNA sequences which takes into account secondary structure
information. This alignment is available on our supplementary data website.
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Fig. 6. SCI Benchmarking. Structure Conservation Index (SCI) score is obtained for
each alignment, which is shown on the y-axis. The x-axis shows the average pairwise
sequence identity (APSI) for each dataset. The data used were sets of (a)2, (b)3, (c)5,
(d)7, ()10, and (f)15 sequences per dataset.

4 Conclusion

We presented an algorithm which aligns RNA sequences using both sequence and
structure information. The algorithm only requires one sequence to have struc-
ture information and is able to align all other input sequences without human
interaction. Because we are able to drastically reduce the memory consumption
as compared to previous work, our algorithm is able to run on very long RNA
sequences, such as 16S and 23S rRNA.

We propose three major ideas which improved the performance of PMFastR
and which can be applied to other work. Banding allows a significant reduc-
tion in both run time and space consumption of our alignment algorithm. In
fact, we are able to reduce the space consumption from cubic to linear when
comparing to the predecessor, FastR. Moreover, reordering the inner loops of
this algorithm allows us to run it in a multi-threaded manner, thus drastically
reducing the wall time. These modifications do not alter the quality of the al-
gorithm’s results, and we show that PMFastR with CMBuild refinement does
better than other state-of-the-art RNA multiple alignment tools and creates
comparable alignments to the hand-curated ones in the Rfam database. All re-
sults, as well as the application source code, can be found on the project web
page at http://genome.ucf.edu/PMFastR.
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